A034794 a(n) is the least prime p > a(n-1) such that a(n-1) is a quadratic residue mod p.
2, 7, 19, 31, 41, 43, 53, 59, 67, 73, 79, 89, 97, 101, 107, 127, 139, 151, 163, 173, 179, 193, 197, 223, 241, 251, 283, 293, 307, 313, 317, 353, 383, 389, 409, 419, 443, 457, 461, 467, 487, 499, 521, 523, 571, 577, 593, 601, 607, 619, 631, 641, 643, 653, 659
Offset: 1
Links
- T. D. Noe, Table of n, a(n) for n=1..1000
Programs
-
Haskell
a034794 n = a034794_list !! (n-1) a034794_list = 2 : f 2 (tail a000040_list) where f x (p:ps) = if elem x $ a046071_row p then p : f p ps else f x ps -- Reinhard Zumkeller, May 10 2015
-
Maple
f:= proc(t) local i,p; p:= t; do p:= nextprime(p); if numtheory:-jacobi(t,p) = 1 then return p fi od end proc: A[1]:= 2: for n from 2 to 100 do A[n]:= f(A[n-1]) od: seq(A[i],i=1..100); # Robert Israel, Sep 04 2016
-
Mathematica
f[n_] := Block[{k = PrimePi[n] + 1}, While[ JacobiSymbol[n, Prime[k]] == -1, k++ ]; Prime[k]]; NestList[f, 2, 54] (* Robert G. Wilson v, Mar 16 2004 *)
Extensions
Mathematica updated by Jean-François Alcover, Jul 04 2013
Name corrected by Robert Israel, Sep 04 2016
Comments