A092581 a(n) is the least prime such that a(n-1) is a quadratic non-residue of a(n).
2, 3, 5, 7, 11, 13, 19, 23, 31, 37, 43, 47, 59, 61, 67, 71, 79, 83, 89, 101, 103, 107, 109, 127, 131, 137, 149, 151, 157, 163, 167, 179, 181, 191, 199, 227, 229, 239, 251, 257, 263, 271, 277, 283, 307, 311, 331, 347, 349, 359, 367, 373, 379, 383, 409, 431, 439
Offset: 1
Keywords
References
- Paulo Ribenboim, "The Little Book of Big Primes", Springer-Verlag, 1991, p. 28.
Links
- T. D. Noe, Table of n, a(n) for n=1..1000
Crossrefs
Cf. A034794.
Programs
-
Mathematica
first Needs[ "NumberTheory`NumberTheoryFunctions`" ] then f[n_] := Block[{k = PrimePi[n] + 1}, While[ JacobiSymbol[n, Prime[k]] == 1, k++ ]; Prime[k]]; NestList[f, 2, 56] (* Robert G. Wilson v, Mar 16 2004 *)
Formula
"If p>2 does not divide a and if there exists an integer b such that a is congruent to b^2 (mod p), then a is called a quadratic residue modulo p; otherwise, it is a nonquadratic residue modulo p". (p. 28, Ribenboim)
Extensions
More terms from Robert G. Wilson v, Mar 16 2004
a(17) corrected by T. D. Noe, Aug 28 2007
Comments