cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A092583 Triangle read by rows: T(n,k) is the number of permutations p of [n] in which the length of the longest initial segment avoiding the 123-pattern is equal to k.

Original entry on oeis.org

1, 0, 2, 0, 1, 5, 0, 4, 6, 14, 0, 20, 30, 28, 42, 0, 120, 180, 168, 120, 132, 0, 840, 1260, 1176, 840, 495, 429, 0, 6720, 10080, 9408, 6720, 3960, 2002, 1430, 0, 60480, 90720, 84672, 60480, 35640, 18018, 8008, 4862, 0, 604800, 907200, 846720, 604800, 356400, 180180, 80080, 31824, 16796
Offset: 1

Views

Author

Emeric Deutsch and Warren P. Johnson (wjohnson(AT)bates.edu), Apr 10 2004

Keywords

Comments

Row sums are the factorial numbers (A000142).
Diagonal is A000108.
T(n,n-1) = binomial(2n-2,n-3) = A002694(n-1).

Examples

			T(4,3) = 6 because 1324, 1423, 2134, 2314, 3124 and 4123 are the only permutations of [4] in which the length of the longest initial segment avoiding the 123-pattern is equal to 3 (i.e., the first three entries do not contain the 123-pattern but all 4 of them do).
Triangle starts:
  1;
  0,    2;
  0,    1,    5;
  0,    4,    6,   14;
  0,   20,   30,   28,   42;
  0,  120,  180,  168,  120,  132;
  0,  840, 1260, 1176,  840,  495,  429;
  ...
		

Crossrefs

Programs

  • GAP
    T:= function(n,k)
        if k=n then return Binomial(2*n, n)/(n + 1);
        else return Factorial(n)*Binomial(2*k, k-2)/Factorial(k+1);
        fi;
      end;
    Flat(List([1..12], n-> List([1..n], k-> T(n,k) ))); # G. C. Greubel, Jul 22 2019
  • Magma
    T:= func< n,k | k eq n select Catalan(n) else Factorial(n)*Binomial(2*k, k-2)/Factorial(k+1) >;
    [T(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Jul 22 2019
    
  • Mathematica
    T[n_,k_]:= If[k==n, CatalanNumber[n], n!*Binomial[2*k,k-2]/(k+1)!]; Table[T[n,k], {n,12}, {k,n}]//Flatten (* G. C. Greubel, Jul 22 2019 *)
  • PARI
    tabl(nn) = {for (n=1, nn, for (k=1, n-1, print1(n!*binomial(2*k, k-2)/(k+1)!, ", ");); print1(binomial(2*n, n)/(n+1), ", "); print(););} \\ Michel Marcus, Jul 16 2013
    
  • Sage
    def T(n, k):
        if (k==n): return catalan_number(n)
        else: return factorial(n)*binomial(2*k, k-2)/factorial(k+1)
    [[T(n,k) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Jul 22 2019
    

Formula

T(n,k) = n!*binomial(2k, k-2)/(k+1)! for k < n;
T(n,n) = binomial(2n, n)/(n+1) = A000108(n).