A092583 Triangle read by rows: T(n,k) is the number of permutations p of [n] in which the length of the longest initial segment avoiding the 123-pattern is equal to k.
1, 0, 2, 0, 1, 5, 0, 4, 6, 14, 0, 20, 30, 28, 42, 0, 120, 180, 168, 120, 132, 0, 840, 1260, 1176, 840, 495, 429, 0, 6720, 10080, 9408, 6720, 3960, 2002, 1430, 0, 60480, 90720, 84672, 60480, 35640, 18018, 8008, 4862, 0, 604800, 907200, 846720, 604800, 356400, 180180, 80080, 31824, 16796
Offset: 1
Examples
T(4,3) = 6 because 1324, 1423, 2134, 2314, 3124 and 4123 are the only permutations of [4] in which the length of the longest initial segment avoiding the 123-pattern is equal to 3 (i.e., the first three entries do not contain the 123-pattern but all 4 of them do). Triangle starts: 1; 0, 2; 0, 1, 5; 0, 4, 6, 14; 0, 20, 30, 28, 42; 0, 120, 180, 168, 120, 132; 0, 840, 1260, 1176, 840, 495, 429; ...
Links
- G. C. Greubel, Rows n = 1..100 of triangle, flattened
- E. Deutsch and W. P. Johnson, Create your own permutation statistics, Math. Mag., 77, 130-134, 2004.
- R. Simion and F. W. Schmidt, Restricted permutations, European J. Combin., 6, 383-406, 1985.
Programs
-
GAP
T:= function(n,k) if k=n then return Binomial(2*n, n)/(n + 1); else return Factorial(n)*Binomial(2*k, k-2)/Factorial(k+1); fi; end; Flat(List([1..12], n-> List([1..n], k-> T(n,k) ))); # G. C. Greubel, Jul 22 2019
-
Magma
T:= func< n,k | k eq n select Catalan(n) else Factorial(n)*Binomial(2*k, k-2)/Factorial(k+1) >; [T(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Jul 22 2019
-
Mathematica
T[n_,k_]:= If[k==n, CatalanNumber[n], n!*Binomial[2*k,k-2]/(k+1)!]; Table[T[n,k], {n,12}, {k,n}]//Flatten (* G. C. Greubel, Jul 22 2019 *)
-
PARI
tabl(nn) = {for (n=1, nn, for (k=1, n-1, print1(n!*binomial(2*k, k-2)/(k+1)!, ", ");); print1(binomial(2*n, n)/(n+1), ", "); print(););} \\ Michel Marcus, Jul 16 2013
-
Sage
def T(n, k): if (k==n): return catalan_number(n) else: return factorial(n)*binomial(2*k, k-2)/factorial(k+1) [[T(n,k) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Jul 22 2019
Formula
T(n,k) = n!*binomial(2k, k-2)/(k+1)! for k < n;
T(n,n) = binomial(2n, n)/(n+1) = A000108(n).
Comments