cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A193869 Smallest product of n distinct primes of the form n*k + 1.

Original entry on oeis.org

2, 15, 1729, 32045, 60551711, 85276009, 52814801041129, 1312422595226609, 1130308388231798179, 4182230628909121261, 100166053986652515419641469, 1898732717895963155960377, 1011844196551535741726366525322443
Offset: 1

Views

Author

Omar E. Pol, Sep 01 2011

Keywords

Comments

Also the row products of triangle A077316.
Note that a(3) = 1729 is known as the Hardy-Ramanujan number.

Examples

			a(1) = 2
a(2) = 3*5 = 15
a(3) = 7*13*19 = 1729
a(4) = 5*13*17*29 = 32045
a(5) = 11*31*41*61*71 = 60551711
a(6) = 7*13*19*31*37*43 = 85276009
		

Crossrefs

Programs

  • Maple
    Tj := proc(n,k) option remember: local j,p: if(k=0)then return 0:fi: for j from procname(n,k-1)+1 do if(isprime(n*j+1))then return j: fi: od: end: A193869 := proc(n) return mul(n*Tj(n,k)+1,k=1..n): end: seq(A193869(n),n=1..15); # Nathaniel Johnston, Sep 02 2011

Extensions

a(7)-a(14) from Nathaniel Johnston, Sep 02 2011

A193873 Smallest product of three distinct primes of the form n*k+1.

Original entry on oeis.org

30, 105, 1729, 1105, 13981, 1729, 88537, 50881, 51319, 13981, 137149, 29341, 548497, 88537, 285541, 186337, 3372529, 51319, 18326641, 252601, 1152271, 137149, 1809641, 1366633, 3828001, 548497, 4814857, 645569, 4797703, 285541, 79230049, 4811297
Offset: 1

Views

Author

Omar E. Pol, Sep 02 2011

Keywords

Comments

Note that the Hardy-Ramanujan number is the first and the smallest repeated number: a(3) = a(6) = 1729.

Examples

			a(1) =  2*3*5 = 30
a(2) =  3*5*7 = 105
a(3) =  7*13*19 = 1729
a(4) =  5*13*17 = 1105
a(5) = 11*31*41 = 13981
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{s = {}, c = 0, m = n + 1}, While[c < 3, While[!PrimeQ[m], m += n]; c++; AppendTo[s, m]; m += n]; Times @@ s]; Array[a, 100] (* Amiram Eldar, Jan 17 2025 *)
  • PARI
    a(n)=my(p,q,k=1);while(!isprime(k+=n),);p=k;while(!isprime(k+=n),);q=k;while(!isprime(k+=n),);p*q*k \\ Charles R Greathouse IV, Sep 03 2011

A338784 a(n) is the smallest number with exactly n divisors such that all its divisors end with the same digit (which is necessarily 1).

Original entry on oeis.org

1, 11, 121, 341, 14641, 3751, 1771561, 13981, 116281, 453871, 25937424601, 153791, 3138428376721, 54918391, 14070001, 852841, 45949729863572161, 4767521, 5559917313492231481, 18608711, 1702470121, 804060162631, 81402749386839761113321, 9381251, 13521270961, 97291279678351, 195468361
Offset: 1

Views

Author

Bernard Schott, Nov 09 2020

Keywords

Comments

As 1 is a divisor for each number, all the divisors must end with 1.

Examples

			121 is the smallest number whose 3 divisors (1, 11, 121) end with 1, hence a(3) = 121.
3751 is the smallest number whose 6 divisors (1, 11, 31, 121, 341, 3751) end with 1, hence a(6) = 121.
a(18) = 4767521 = 11^2 * 31^2 * 41 as it has 18 divisors all of which end in 1. - _David A. Corneth_, Nov 09 2020
		

Crossrefs

Subsequence of A004615.

Programs

  • PARI
    a(n) = {my(pr); if(n==1, return(1)); if(isprime(n), return(11^(n-1))); forstep(i = 1, oo, 10, f = factor(i); if(numdiv(f) == n, pr = 1; for(j = 1, #f~, if(f[j, 1]%10 != 1, pr = 0; next(2) ) ) ); if(pr, return(i)); ) } \\ David A. Corneth, Nov 09 2020

Formula

If n is prime p, then a(p) = 11^(p-1) = A001020(p-1).
For k>=1, a(2^k) = {Product_m=1..k} A030430(m) = A092609(k).

Extensions

Data corrected by David A. Corneth, Nov 09 2020
Showing 1-3 of 3 results.