cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A077316 Triangle read by rows: T(n,k) is the k-th prime = 1 (mod n).

Original entry on oeis.org

2, 3, 5, 7, 13, 19, 5, 13, 17, 29, 11, 31, 41, 61, 71, 7, 13, 19, 31, 37, 43, 29, 43, 71, 113, 127, 197, 211, 17, 41, 73, 89, 97, 113, 137, 193, 19, 37, 73, 109, 127, 163, 181, 199, 271, 11, 31, 41, 61, 71, 101, 131, 151, 181, 191, 23, 67, 89, 199, 331, 353
Offset: 1

Views

Author

Amarnath Murthy, Nov 04 2002

Keywords

Examples

			Triangle begins:
   2;
   3,  5;
   7, 13, 19;
   5, 13, 17, 29;
  11, 31, 41, 61, 71;
  ...
		

Crossrefs

Cf. A034694 (first column), A077317 (main diagonal), A077318 (row sums), A077319, A093870, A193869 (row products).

Programs

  • Maple
    Tj := proc(n,k) option remember: local j,p: if(k=0)then return 0:fi: for j from procname(n,k-1)+1 do if(isprime(n*j+1))then return j: fi: od: end: A077316 := proc(n,k) return n*Tj(n,k)+1: end: seq(seq(A077316(n,k),k=1..n),n=1..15); # Nathaniel Johnston, Sep 02 2011
  • Mathematica
    Tj[n_, k_] := Tj[n, k] = Module[{j}, If[k == 0, Return[0]];
       For[j = Tj[n, k-1]+1, True, j++, If[PrimeQ[n*j+1], Return[j]]]];
    T[n_, k_] := n*Tj[n, k]+1;
    Table[Table[T[n, k], {k, 1, n}], {n, 1, 15}] // Flatten (* Jean-François Alcover, Aug 02 2022, after Nathaniel Johnston *)

Extensions

Edited and extended by Franklin T. Adams-Watters, Aug 29 2006

A193873 Smallest product of three distinct primes of the form n*k+1.

Original entry on oeis.org

30, 105, 1729, 1105, 13981, 1729, 88537, 50881, 51319, 13981, 137149, 29341, 548497, 88537, 285541, 186337, 3372529, 51319, 18326641, 252601, 1152271, 137149, 1809641, 1366633, 3828001, 548497, 4814857, 645569, 4797703, 285541, 79230049, 4811297
Offset: 1

Views

Author

Omar E. Pol, Sep 02 2011

Keywords

Comments

Note that the Hardy-Ramanujan number is the first and the smallest repeated number: a(3) = a(6) = 1729.

Examples

			a(1) =  2*3*5 = 30
a(2) =  3*5*7 = 105
a(3) =  7*13*19 = 1729
a(4) =  5*13*17 = 1105
a(5) = 11*31*41 = 13981
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{s = {}, c = 0, m = n + 1}, While[c < 3, While[!PrimeQ[m], m += n]; c++; AppendTo[s, m]; m += n]; Times @@ s]; Array[a, 100] (* Amiram Eldar, Jan 17 2025 *)
  • PARI
    a(n)=my(p,q,k=1);while(!isprime(k+=n),);p=k;while(!isprime(k+=n),);q=k;while(!isprime(k+=n),);p*q*k \\ Charles R Greathouse IV, Sep 03 2011

A194263 Numbers that occur more than once in A193873, in order of appearance.

Original entry on oeis.org

1729, 13981, 88537, 51319, 137149, 548497, 285541, 3372529, 18326641, 1152271, 1809641, 3828001, 4814857, 4797703, 79230049, 4413223, 4209661, 19703611, 3882139, 50357677, 70611161, 26536591, 175493677, 85409941, 12932989, 84350561, 192754871, 59756863
Offset: 1

Views

Author

Omar E. Pol, Sep 02 2011

Keywords

Comments

Note that a(1) = 1729 is known as the Hardy-Ramanujan number (see A001235).
Apparently these numbers occur only twice in A193873.
Many of these numbers occur more than twice. For example, 812405017 occurs 3 times, a(67), a(134), and a(268). Robert Price, Mar 17 2020

Examples

			1729 is in the sequence because the Hardy-Ramanujan number is also the smallest product of three distinct primes of the form 3*k+1 and also of the form 6*k+1, so 1729 occurs more than once in A193873.
		

Crossrefs

Formula

It appears that a(n) = A193873(2*n+1).
This conjecture only holds for n<62: a(62)=A193873(124)=A193873(2n)=620378449
, a(63)=A193873(125)=A193873(2n-1)=424315751
. Robert Price, Mar 17 2020

A194265 Smallest product of two distinct primes of the form n*k+1.

Original entry on oeis.org

6, 15, 91, 65, 341, 91, 1247, 697, 703, 341, 1541, 481, 4187, 1247, 1891, 1649, 14111, 703, 43739, 2501, 5461, 1541, 6533, 7081, 15251, 4187, 17767, 3277, 13747, 1891, 116003, 18721, 13333, 14111, 14981, 2701, 33227, 43739, 12403, 9881, 61337, 5461, 74563
Offset: 1

Views

Author

Omar E. Pol, Sep 03 2011

Keywords

Examples

			a(1) = 2*3 = 6
a(2) = 3*5 = 15
a(3) = 7*13 = 91
a(4) = 5*13 = 65
a(5) = 11*31 = 341
		

Crossrefs

Programs

  • Mathematica
    Table[ps = Select[Table[n*k + 1, {k, 100}], PrimeQ, 2]; If[Length[ps] == 2, ps[[1]]*ps[[2]], 0], {n, 100}] (* T. D. Noe, Oct 21 2011 *)
Showing 1-4 of 4 results.