A092626 Primes with one nonprime digit.
13, 17, 29, 31, 43, 47, 59, 67, 71, 79, 83, 97, 127, 137, 157, 173, 229, 239, 251, 263, 271, 283, 293, 307, 313, 317, 331, 347, 359, 367, 379, 383, 397, 433, 457, 503, 521, 547, 563, 571, 587, 593, 653, 673, 677, 739, 743, 751, 787, 797, 823, 827, 853, 857
Offset: 1
Examples
13 is prime and it has one nonprime digit, 1; 3259 is prime and it has one nonprime digit, 9.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A019546.
Programs
-
Maple
stev_sez:=proc(n) local i, tren, st, ans, anstren; ans:=[ ]: anstren:=[ ]: tren:=n: for i while (tren>0) do st:=round( 10*frac(tren/10) ): ans:=[ op(ans), st ]: tren:=trunc(tren/10): end do; for i from nops(ans) to 1 by -1 do anstren:=[ op(anstren), op(i,ans) ]; od; RETURN(anstren); end: ts_stnepf:=proc(n) local i, stpf, ans; ans:=stev_sez(n): stpf:=0: for i from 1 to nops(ans) do if (isprime(op(i,ans))='false') then stpf:=stpf+1; # number of nonprime digits fi od; RETURN(stpf) end: ts_pr_neprn:=proc(n) local i, stpf, ans, ans1, tren; ans:=[ ]: stpf:=0: tren:=1: for i from 1 to n do if ( isprime(i)='true' and ts_stnepf(i) = 1) then ans:=[ op(ans), i ]: tren:=tren+1; fi od; RETURN(ans) end: ts_pr_neprn(4000);
-
Mathematica
Select[Prime[Range[200]],Count[IntegerDigits[#],?(!PrimeQ[#]&)]==1&] (* _Harvey P. Dale, Feb 18 2018 *)
Extensions
Edited by R. J. Mathar, Nov 02 2009
Comment from Charles R Greathouse IV, Mar 19 2010
Comments