A092673 a(n) = moebius(n) - moebius(n/2) where moebius(n) is zero if n is not an integer.
1, -2, -1, 1, -1, 2, -1, 0, 0, 2, -1, -1, -1, 2, 1, 0, -1, 0, -1, -1, 1, 2, -1, 0, 0, 2, 0, -1, -1, -2, -1, 0, 1, 2, 1, 0, -1, 2, 1, 0, -1, -2, -1, -1, 0, 2, -1, 0, 0, 0, 1, -1, -1, 0, 1, 0, 1, 2, -1, 1, -1, 2, 0, 0, 1, -2, -1, -1, 1, -2, -1, 0, -1, 2, 0, -1, 1, -2, -1, 0, 0, 2, -1, 1, 1, 2, 1, 0, -1, 0, 1, -1, 1, 2, 1, 0, -1, 0, 0, 0, -1, -2, -1, 0, -1, 2
Offset: 1
Examples
The first few s[n] are: x, -2*x + 3, -x + 3, x + 1, -x + 5, 2*x, -x + 7, 4, 6, 2*x + 2, -x + 11, -x + 5, -x + 13, 2*x + 4, x + 7, 8, -x + 17, 6, -x + 19, -x + 9, x + 11, 2*x + 8, -x + 23, 8, 20, 2*x + 10, 18, -x + 13, -x + 29, -2*x + 10, -x + 31, 16, x + 19. x - 2*x^2 - x^3 + x^4 - x^5 + 2*x^6 - x^7 + 2*x^10 - x^11 +...
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Michael Somos, Introduction to Ramanujan theta functions, 2019.
- Mathematics Stack Exchange, What is the inverse of ... ?.
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
Crossrefs
Programs
-
Maple
A092673:= proc(n) if n::odd then numtheory:-mobius(n) else numtheory:-mobius(n) - numtheory:-mobius(n/2) fi end proc: map(A092673, [$1..100]); # Robert Israel, Dec 31 2015
-
Mathematica
f[n_] := MoebiusMu[n] - If[OddQ@n, 0, MoebiusMu[n/2]]; Array[f, 105] (* Robert G. Wilson v *)
-
PARI
s=vector(2000); t(n)=binomial(n+1,2); s[1]=x; for(i=2,2000, s[i]=t(i)-sum(j=1,i-1, s[j]*floor(i/j))); for(i=1,2000,print1(","polcoeff(s[i],1)))
-
PARI
{a(n) = if( n<1, 0, moebius(n) - if( n%2, 0, moebius(n/2)))} /* Michael Somos, Mar 26 2007 */
-
PARI
{a(n) = local(A, B, m); if( n<1, 0, A = x * O(x^n); B = 1 + x + A; for( k=1, n, B *= eta(x^k + A)^( m = polcoeff(B, k))); m)} /* Michael Somos, Mar 26 2007 */
-
PARI
a(n)=my(o=valuation(n%8,2)); if(o==0, moebius(n), if(o==1, 2*moebius(n), if(o==2, moebius(n/4), 0))) \\ Charles R Greathouse IV, Feb 07 2013
-
Python
from sympy import mobius def A092673(n): return mobius(n)-(0 if n&1 else mobius(n>>1)) # Chai Wah Wu, Jul 13 2022
Formula
Let t(n) = binomial(n+1,2); s[1]=x; for i >= 2, s[i] = t(i)-Sum_{j=1..i-1} s[j]*floor(i/j); a(n) = coefficient of x in s[n]. - Jon Perry
a(n) is multiplicative with a(2)= -2, a(4)= 1, a(2^e)= 0 if e>2. a(p)= -1, a(p^e)= 0 if e>1, p>2. - Michael Somos, Mar 26 2007
a(8*n)= 0. a(2*n + 1) = moebius(2*n + 1). a(2*n) = moebius(2*n) - moebius(n). - Michael Somos, Mar 26 2007
|a(n)| <= 2.
1 / (1 + x) = Product_{k>0} f(-x^k)^a(k) where f() is a Ramanujan theta function. - Michael Somos, Mar 26 2007
Dirichlet g.f.: (1-2^(-s))/zeta(s). - Ralf Stephan, Mar 24 2015
G.f. A(x) satisfies x * (1 - x) = Sum_{k>=1} A(x^k). - Seiichi Manyama, Mar 31 2023
Sum_{k=1..n} abs(a(k)) ~ c * n, where c = 9/Pi^2 = 0.9118906... . - Amiram Eldar, Jan 19 2024
Comments