cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A092688 Row sums of triangle A092686, in which the convolution of each row with {1,2} produces a triangle that, when flattened, equals the flattened form of A092686.

Original entry on oeis.org

1, 4, 16, 58, 204, 698, 2346, 7774, 25480, 82774, 266946, 855674, 2728702, 8663402, 27400862, 86376186, 271488444, 851099874, 2661967502, 8308462182, 25883429326, 80497346294, 249956869434, 775048966478, 2400067860090
Offset: 0

Views

Author

Paul D. Hanna, Mar 04 2004

Keywords

Crossrefs

Programs

  • PARI
    {T(n,k)=if(n<0 || k>n,0, if(n==0 && k==0,1, if(n==1 && k<=1,2, if(k==n,T(n,0), 2*T(n-1,k)+T(n-1,k+1)))))}
    a(n)=sum(k=0,n,T(n,k))
    
  • PARI
    {a(n)=local(A,F=1+2*x,d=1,G=x,H=1+2*x,S=ceil(log(n+1)/log(d+1))); for(i=0,n,G=x*subst(F,x,G+x*O(x^n)));for(i=0,S,H=subst(H,x,x*G^d+x*O(x^n))*G/x); A=(x*H-y*subst(H,x,x*y^d +x*O(x^n)))/(x*subst(F,x,y)-y); sum(k=0,d*n,polcoeff(polcoeff(A,n,x),k,y))} \\ Paul D. Hanna, Jul 17 2006

Formula

G.f.: A(x) = H(x)*(1-x)/(1-3*x), where H(x) satisfies: H(x) = H(x^2/(1-2x))/(1-2x) and H(x) is the g.f. of A092687. - Paul D. Hanna, Jul 17 2006