cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A092686 Triangle, read by rows, such that the convolution of each row with {1,2} produces a triangle which, when flattened, equals this flattened form of the original triangle.

Original entry on oeis.org

1, 2, 2, 6, 4, 6, 16, 14, 12, 16, 46, 40, 40, 32, 46, 132, 120, 112, 110, 92, 132, 384, 352, 334, 312, 316, 264, 384, 1120, 1038, 980, 940, 896, 912, 768, 1120, 3278, 3056, 2900, 2776, 2704, 2592, 2656, 2240, 3278, 9612, 9012, 8576, 8256, 8000, 7840, 7552, 7758
Offset: 0

Views

Author

Paul D. Hanna, Mar 04 2004

Keywords

Comments

First column and main diagonal forms A092687. Row sums form A092688.
This triangle is the cascadence of binomial (1+2x). More generally, the cascadence of polynomial F(x) of degree d, F(0)=1, is a triangle with d*n+1 terms in row n where the g.f. of the triangle, A(x,y), is given by: A(x,y) = ( x*H(x) - y*H(x*y^d) )/( x*F(y) - y ), where H(x) satisfies: H(x) = G*H(x*G^d)/x and G=G(x) satisfies: G(x) = x*F(G(x)) so that G = series_reversion(x/F(x)); also, H(x) is the g.f. of column 0. - Paul D. Hanna, Jul 17 2006

Examples

			Rows begin:
1;
2, 2;
6, 4, 6;
16, 14, 12, 16;
46, 40, 40, 32, 46;
132, 120, 112, 110, 92, 132;
384, 352, 334, 312, 316, 264, 384;
1120, 1038, 980, 940, 896, 912, 768, 1120;
3278, 3056, 2900, 2776, 2704, 2592, 2656, 2240, 3278;
9612, 9012, 8576, 8256, 8000, 7840, 7552, 7758, 6556, 9612;
28236, 26600, 25408, 24512, 23840, 23232, 22862, 22072, 22724, 19224, 28236; ...
Convolution of each row with {1,2} results in the triangle:
1, 2;
2, 6, 4;
6, 16, 14, 12;
16, 46, 40, 40, 32;
46, 132, 120, 112, 110, 92;
132, 384, 352, 334, 312, 316, 264;
384, 1120, 1038, 980, 940, 896, 912, 768; ...
which, when flattened, equals the original triangle in flattened form.
		

Crossrefs

Programs

  • PARI
    T(n,k)=if(n<0 || k>n,0, if(n==0 && k==0,1, if(n==1 && k<=1,2, if(k==n,T(n,0), 2*T(n-1,k)+T(n-1,k+1)))))
    for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))
    
  • PARI
    /* Generate Triangle by the G.F.: */
    {T(n,k)=local(A,F=1+2*x,d=1,G=x,H=1+2*x,S=ceil(log(n+1)/log(d+1))); for(i=0,n,G=x*subst(F,x,G+x*O(x^n)));for(i=0,S,H=subst(H,x,x*G^d+x*O(x^n))*G/x); A=(x*H-y*subst(H,x,x*y^d +x*O(x^n)))/(x*subst(F,x,y)-y); polcoeff(polcoeff(A,n,x),k,y)}
    for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print()) \\ Paul D. Hanna, Jul 17 2006

Formula

T(n, k) = 2*T(n-1, k) + T(n-1, k+1) for 0<=k
G.f.: A(x,y) = ( x*H(x) - y*H(x*y) )/( x*(1+2y) - y ), where H(x) satisfies: H(x) = H(x^2/(1-2x))/(1-2x) and H(x) is the g.f. of column 0 (A092687). - Paul D. Hanna, Jul 17 2006

A092687 First column and main diagonal of triangle A092686, in which the convolution of each row with {1,2} produces a triangle that, when flattened, equals the flattened form of A092686.

Original entry on oeis.org

1, 2, 6, 16, 46, 132, 384, 1120, 3278, 9612, 28236, 83072, 244752, 722048, 2132704, 6306304, 18666190, 55300732, 163968612, 486528288, 1444571068, 4291629384, 12756459936, 37934818112, 112855778768, 335867740704, 999895548736
Offset: 0

Author

Paul D. Hanna, Mar 04 2004

Keywords

Comments

Conjecture: Limit n->infinity a(n)^(1/n) = 3. - Vaclav Kotesovec, Jun 29 2015

Crossrefs

Programs

  • Mathematica
    m = 27; A[] = 1; Do[A[x] = A[x^2/(1-2x)]/(1-2x) + O[x]^m // Normal, {m}]; CoefficientList[A[x], x] (* Jean-François Alcover, Nov 03 2019 *)
  • PARI
    T(n,k)=if(n<0||k>n,0, if(n==0&k==0,1, if(n==1&k<=1,2, if(k==n,T(n,0), 2*T(n-1,k)+T(n-1,k+1)))))
    a(n)=T(n,0)
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    a(n)=local(A=1+x);for(i=0,n\2,A=subst(A,x,x^2/(1-2*x+x*O(x^n)))/(1-2*x));polcoeff(A,n) \\ Paul D. Hanna, Jul 10 2006
    
  • PARI
    /* Using Recurrence: */
    a(n)=if(n==0, 1, sum(k=0, n\2, binomial(n-k, k)*2^(n-2*k)*a(k)))
    for(n=0,30,print1(a(n),", ")) \\ Paul D. Hanna, Jul 10 2006

Formula

G.f. satisfies: A(x) = A( x^2/(1-2x) )/(1-2x). Recurrence: a(n) = Sum_{k=0..floor(n/2)} C(n-k,k)*2^(n-2k)*a(k). - Paul D. Hanna, Jul 10 2006
Showing 1-2 of 2 results.