A092686 Triangle, read by rows, such that the convolution of each row with {1,2} produces a triangle which, when flattened, equals this flattened form of the original triangle.
1, 2, 2, 6, 4, 6, 16, 14, 12, 16, 46, 40, 40, 32, 46, 132, 120, 112, 110, 92, 132, 384, 352, 334, 312, 316, 264, 384, 1120, 1038, 980, 940, 896, 912, 768, 1120, 3278, 3056, 2900, 2776, 2704, 2592, 2656, 2240, 3278, 9612, 9012, 8576, 8256, 8000, 7840, 7552, 7758
Offset: 0
Examples
Rows begin: 1; 2, 2; 6, 4, 6; 16, 14, 12, 16; 46, 40, 40, 32, 46; 132, 120, 112, 110, 92, 132; 384, 352, 334, 312, 316, 264, 384; 1120, 1038, 980, 940, 896, 912, 768, 1120; 3278, 3056, 2900, 2776, 2704, 2592, 2656, 2240, 3278; 9612, 9012, 8576, 8256, 8000, 7840, 7552, 7758, 6556, 9612; 28236, 26600, 25408, 24512, 23840, 23232, 22862, 22072, 22724, 19224, 28236; ... Convolution of each row with {1,2} results in the triangle: 1, 2; 2, 6, 4; 6, 16, 14, 12; 16, 46, 40, 40, 32; 46, 132, 120, 112, 110, 92; 132, 384, 352, 334, 312, 316, 264; 384, 1120, 1038, 980, 940, 896, 912, 768; ... which, when flattened, equals the original triangle in flattened form.
Links
- Paul D. Hanna, Table of n, a(n) for n = 0..495
Programs
-
PARI
T(n,k)=if(n<0 || k>n,0, if(n==0 && k==0,1, if(n==1 && k<=1,2, if(k==n,T(n,0), 2*T(n-1,k)+T(n-1,k+1))))) for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))
-
PARI
/* Generate Triangle by the G.F.: */ {T(n,k)=local(A,F=1+2*x,d=1,G=x,H=1+2*x,S=ceil(log(n+1)/log(d+1))); for(i=0,n,G=x*subst(F,x,G+x*O(x^n)));for(i=0,S,H=subst(H,x,x*G^d+x*O(x^n))*G/x); A=(x*H-y*subst(H,x,x*y^d +x*O(x^n)))/(x*subst(F,x,y)-y); polcoeff(polcoeff(A,n,x),k,y)} for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print()) \\ Paul D. Hanna, Jul 17 2006
Formula
T(n, k) = 2*T(n-1, k) + T(n-1, k+1) for 0<=k
G.f.: A(x,y) = ( x*H(x) - y*H(x*y) )/( x*(1+2y) - y ), where H(x) satisfies: H(x) = H(x^2/(1-2x))/(1-2x) and H(x) is the g.f. of column 0 (A092687). - Paul D. Hanna, Jul 17 2006
A120899 G.f. satisfies: A(x) = C(x)^2 * A(x^3*C(x)^4), where C(x) is the g.f. of the Catalan numbers (A000108).
1, 2, 5, 16, 54, 186, 654, 2338, 8463, 30938, 114022, 423096, 1579049, 5922512, 22309350, 84354388, 320020227, 1217689680, 4645693038, 17766596202, 68092473570, 261486788434, 1005962436536, 3876412305114, 14960183283203
Offset: 0
Keywords
Examples
A(x) = 1 + 2*x + 5*x^2 + 16*x^3 + 54*x^4 + 186*x^5 + 654*x^6 +... = C(x)^2 * A(x^3*C(x)^4) where C(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 +... is the g.f. of the Catalan numbers (A000108): C(x) = 1 + x*C(x)^2.
Crossrefs
Programs
-
PARI
{a(n)=local(A=1+x,C=(1/x*serreverse(x/(1+2*x+x^2+x*O(x^n))))^(1/2)); for(i=0,n,A=C^2*subst(A,x,x^3*C^4 +x*O(x^n)));polcoeff(A,n,x)}
A120895 G.f. satisfies: A(x) = G(x)*A(x^3*G(x)^2) where G(x) is the g.f. of the Motzkin numbers (A001006).
1, 1, 2, 5, 12, 30, 78, 206, 552, 1498, 4105, 11340, 31541, 88237, 248076, 700478, 1985397, 5646129, 16104378, 46056513, 132031176, 379315946, 1091890772, 3148736064, 9095091878, 26310816944, 76219704957, 221085782559, 642058752476, 1866693825362, 5432795508417
Offset: 0
Keywords
Comments
Equals column 0 and main diagonal of triangle A120894 (cascadence of 1+x+x^2).
Examples
A(x) = 1 + x + 2*x^2 + 5*x^3 + 12*x^4 + 30*x^5 + 78*x^6 + 206*x^7+... = G(x)*A(x^3*G(x)^2) where G(x) = 1 + x + 2*x^2 + 4*x^3 + 9*x^4 + 21*x^5 + 51*x^6 + 127*x^7 +... is the g.f. of the Motzkin numbers (A001006) so that G(x) satisfies: G(x) = 1 + x*G(x) + x^2*G(x)^2.
Programs
-
PARI
{a(n)=local(A=1+x,G=1/x*serreverse(x/(1+x+x^2+x*O(x^n)))); for(i=0,n,A=G*subst(A,x,x^3*G^2 +x*O(x^n)));polcoeff(A,n,x)}
A120920 G.f. satisfies: A(x) = G(x)^3 * A(x^4*G(x)^9), where G(x) is the g.f. of the number of ternary trees (A001764): G(x) = 1 + x*G(x)^3.
1, 3, 12, 55, 276, 1464, 8058, 45543, 262626, 1538607, 9130446, 54761628, 331403447, 2021021082, 12407102937, 76611488305, 475493441604, 2964664310319, 18560063203353, 116621922800283, 735236268006654
Offset: 0
Keywords
Comments
Column 0 of triangle A120919 (cascadence of (1+x)^3).
Examples
A(x) = 1 + 3*x + 12*x^2 + 55*x^3 + 276*x^4 + 1464*x^5 + 8058*x^6 +... = G(x)^3 * A(x^4*G(x)^9) where G(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + 1428*x^6 +... is g.f. of A001764: G(x) = 1 + x*G(x)^3.
Crossrefs
Programs
-
PARI
{a(n)=local(A=1+x,G=(1/x*serreverse(x/(1+3*x+3*x^2+x^3+x*O(x^n))))^(1/3)); for(i=0,n,A=G^3*subst(A,x,x^4*G^9 +x*O(x^n)));polcoeff(A,n,x)}
A120915 G.f. satisfies: A(x) = C(2x)^2 * A(x^3*C(2x)^4), where C(x) is the g.f. of the Catalan numbers (A000108).
1, 4, 20, 116, 720, 4656, 30996, 210896, 1459536, 10239796, 72651184, 520328112, 3756512912, 27307671040, 199705789248, 1468209751856, 10844681408064, 80437588353600, 598867568439828, 4473784063109904, 33524058847464912
Offset: 0
Keywords
Comments
Column 0 of triangle A120914 (cascadence of (1+2x)^2).
Examples
A(x) = 1 + 4*x + 20*x^2 + 116*x^3 + 720*x^4 + 4656*x^5 + 30996*x^6 +... = C(2x)^2 * A(x^3*C(2x)^4) where C(2x) = 1 + 2*x + 8*x^2 + 40*x^3 + 224*x^4 + 1344*x^5 + 8448*x^6 +... and C(x) is g.f. of the Catalan numbers (A000108): C(x) = 1 + x*C(x)^2.
Crossrefs
Programs
-
PARI
{a(n)=local(A=1+x,C=(1/x*serreverse(x/(1+4*x+4*x^2+x*O(x^n))))^(1/2)); for(i=0,n,A=C^2*subst(A,x,x^3*C^4 +x*O(x^n)));polcoeff(A,n,x)}
A092688 Row sums of triangle A092686, in which the convolution of each row with {1,2} produces a triangle that, when flattened, equals the flattened form of A092686.
1, 4, 16, 58, 204, 698, 2346, 7774, 25480, 82774, 266946, 855674, 2728702, 8663402, 27400862, 86376186, 271488444, 851099874, 2661967502, 8308462182, 25883429326, 80497346294, 249956869434, 775048966478, 2400067860090
Offset: 0
Keywords
Programs
-
PARI
{T(n,k)=if(n<0 || k>n,0, if(n==0 && k==0,1, if(n==1 && k<=1,2, if(k==n,T(n,0), 2*T(n-1,k)+T(n-1,k+1)))))} a(n)=sum(k=0,n,T(n,k))
-
PARI
{a(n)=local(A,F=1+2*x,d=1,G=x,H=1+2*x,S=ceil(log(n+1)/log(d+1))); for(i=0,n,G=x*subst(F,x,G+x*O(x^n)));for(i=0,S,H=subst(H,x,x*G^d+x*O(x^n))*G/x); A=(x*H-y*subst(H,x,x*y^d +x*O(x^n)))/(x*subst(F,x,y)-y); sum(k=0,d*n,polcoeff(polcoeff(A,n,x),k,y))} \\ Paul D. Hanna, Jul 17 2006
Formula
G.f.: A(x) = H(x)*(1-x)/(1-3*x), where H(x) satisfies: H(x) = H(x^2/(1-2x))/(1-2x) and H(x) is the g.f. of A092687. - Paul D. Hanna, Jul 17 2006
Comments