cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A120894 Cascadence of 1+x+x^2; a triangle, read by rows of 2n+1 terms, that retains its original form upon convolving each row with [1,1,1] and then letting excess terms spill over from each row into the initial positions of the next row such that only 2n+1 terms remain in row n for n>=0.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 2, 1, 2, 5, 7, 6, 5, 3, 2, 5, 12, 18, 18, 14, 10, 10, 7, 5, 12, 30, 48, 50, 42, 34, 27, 22, 24, 17, 12, 30, 78, 128, 140, 126, 103, 83, 73, 63, 53, 59, 42, 30, 78, 206, 346, 394, 369, 312, 259, 219, 189, 175, 154, 131, 150, 108, 78, 206, 552, 946, 1109
Offset: 0

Views

Author

Paul D. Hanna, Jul 14 2006

Keywords

Comments

In this case, the g.f. of column 0, H(x), satisfies: H(x) = H(x*G^2)*G/x where G satisfies: G = x*(1+G+G^2), so that G/x = g.f. of Motzkin numbers (A001006). More generally, the cascadence of polynomial F(x) of degree d, F(0)=1, is a triangle with d*n+1 terms in row n where the g.f. H(x) of column 0 satisfies: H(x) = H(x*G^d)*G/x where G = x*F(G); thus G = series_reversion(x/F(x)), or, equivalently, [x^n] G = [x^n] x*F(x)^n/n for n>=1.
Further, the g.f. of the cascadence triangle for polynomial F(x) of degree d is given by: A(x,y) = ( x*H(x) - y*H(x*y^d) )/( x*F(y) - y ), where H(x) = G*H(x*G^d)/x and G = x*F(G). - Paul D. Hanna, Jul 17 2006

Examples

			Triangle begins:
1;
1, 1, 1;
2, 3, 2, 1, 2;
5, 7, 6, 5, 3, 2, 5;
12, 18, 18, 14, 10, 10, 7, 5, 12;
30, 48, 50, 42, 34, 27, 22, 24, 17, 12, 30;
78, 128, 140, 126, 103, 83, 73, 63, 53, 59, 42, 30, 78;
206, 346, 394, 369, 312, 259, 219, 189, 175, 154, 131, 150, 108, 78, 206;
552, 946, 1109, 1075, 940, 790, 667, 583, 518, 460, 435, 389, 336, 392, 284, 206, 552;
1498, 2607, 3130, 3124, 2805, 2397, 2040, 1768, 1561, 1413, 1284, 1160, 1117, 1012, 882, 1042, 758, 552, 1498; ...
Convolution of [1,1,1] with each row produces:
[1,1,1]*[1] = [1,1,1];
[1,1,1]*[1,1,1] = [1,2,3,2,1];
[1,1,1]*[2,3,2,1,2] = [2,5,7,6,5,3,2];
[1,1,1]*[5,7,6,5,3,2,5] = [5,12,18,18,14,10,10,7,5];
[1,1,1]*[12,18,18,14,10,10,7,5,12] = [12,30,48,50,42,34,27,22,24,17,12]; ...
These convoluted rows, when concatenated, yield the sequence:
1,1,1, 1,2,3,2,1, 2,5,7,6,5,3,2, 5,12,18,18,14,10,10,7,5, ...
which equals the concatenated rows of this original triangle:
1, 1,1,1, 2,3,2,1,2, 5,7,6,5,3,2,5, 12,18,18,14,10,10,7,5,12, ...
		

Crossrefs

Cf. A120895 (column 0), A120896 (central terms), A120897 (row sums), A001006 (Motzkin numbers); variants: A092683, A092686, A120898.

Programs

  • PARI
    T(n,k)=if(2*n
    				
  • PARI
    /* Generated by the G.F.: */
    {T(n,k)=local(A,F=1+x+x^2,d=2,G=x,H=1+x,S=ceil(log(n+1)/log(d+1))); for(i=0,n,G=x*subst(F,x,G+x*O(x^n)));for(i=0,S,H=subst(H,x,x*G^d+x*O(x^n))*G/x); A=(x*H-y*subst(H,x,x*y^d +x*O(x^n)))/(x*subst(F,x,y)-y); polcoeff(polcoeff(A,n,x),k,y)}
    for(n=0, 10, for(k=0, 2*n, print1(T(n, k), ", ")); print()) \\ Paul D. Hanna, Jul 17 2006

Formula

G.f.: A(x,y) = ( x*H(x) - y*H(x*y^2) )/( x*F(y) - y ), where H(x) = G*H(x*G^2)/x, G = x*F(G), F(x)=1+x+x^2. - Paul D. Hanna, Jul 17 2006

A120899 G.f. satisfies: A(x) = C(x)^2 * A(x^3*C(x)^4), where C(x) is the g.f. of the Catalan numbers (A000108).

Original entry on oeis.org

1, 2, 5, 16, 54, 186, 654, 2338, 8463, 30938, 114022, 423096, 1579049, 5922512, 22309350, 84354388, 320020227, 1217689680, 4645693038, 17766596202, 68092473570, 261486788434, 1005962436536, 3876412305114, 14960183283203
Offset: 0

Views

Author

Paul D. Hanna, Jul 14 2006

Keywords

Comments

Column 0 of triangle A120898 (cascadence of 1+2x+x^2). Self-convolution of A120900.

Examples

			A(x) = 1 + 2*x + 5*x^2 + 16*x^3 + 54*x^4 + 186*x^5 + 654*x^6 +...
= C(x)^2 * A(x^3*C(x)^4) where
C(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 +...
is the g.f. of the Catalan numbers (A000108): C(x) = 1 + x*C(x)^2.
		

Crossrefs

Cf. A120898, A120900 (square-root), A120901, A120902; A000108; variants: A092684, A092687, A120895.

Programs

  • PARI
    {a(n)=local(A=1+x,C=(1/x*serreverse(x/(1+2*x+x^2+x*O(x^n))))^(1/2)); for(i=0,n,A=C^2*subst(A,x,x^3*C^4 +x*O(x^n)));polcoeff(A,n,x)}

A120920 G.f. satisfies: A(x) = G(x)^3 * A(x^4*G(x)^9), where G(x) is the g.f. of the number of ternary trees (A001764): G(x) = 1 + x*G(x)^3.

Original entry on oeis.org

1, 3, 12, 55, 276, 1464, 8058, 45543, 262626, 1538607, 9130446, 54761628, 331403447, 2021021082, 12407102937, 76611488305, 475493441604, 2964664310319, 18560063203353, 116621922800283, 735236268006654
Offset: 0

Views

Author

Paul D. Hanna, Jul 17 2006

Keywords

Comments

Column 0 of triangle A120919 (cascadence of (1+x)^3).

Examples

			A(x) = 1 + 3*x + 12*x^2 + 55*x^3 + 276*x^4 + 1464*x^5 + 8058*x^6 +...
= G(x)^3 * A(x^4*G(x)^9) where
G(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + 1428*x^6 +...
is g.f. of A001764: G(x) = 1 + x*G(x)^3.
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x,G=(1/x*serreverse(x/(1+3*x+3*x^2+x^3+x*O(x^n))))^(1/3)); for(i=0,n,A=G^3*subst(A,x,x^4*G^9 +x*O(x^n)));polcoeff(A,n,x)}

A120897 Row sums of triangle A120894 (cascadence of 1+x+x^2).

Original entry on oeis.org

1, 3, 10, 33, 106, 336, 1056, 3296, 10234, 31648, 97551, 299888, 919865, 2816291, 8608712, 26278538, 80120533, 244022331, 742525242, 2257527861, 6858558246, 20822959508, 63181453350, 191601205342, 580749971840, 1759465640586
Offset: 0

Views

Author

Paul D. Hanna, Jul 14 2006

Keywords

Crossrefs

A120915 G.f. satisfies: A(x) = C(2x)^2 * A(x^3*C(2x)^4), where C(x) is the g.f. of the Catalan numbers (A000108).

Original entry on oeis.org

1, 4, 20, 116, 720, 4656, 30996, 210896, 1459536, 10239796, 72651184, 520328112, 3756512912, 27307671040, 199705789248, 1468209751856, 10844681408064, 80437588353600, 598867568439828, 4473784063109904, 33524058847464912
Offset: 0

Views

Author

Paul D. Hanna, Jul 17 2006

Keywords

Comments

Column 0 of triangle A120914 (cascadence of (1+2x)^2).

Examples

			A(x) = 1 + 4*x + 20*x^2 + 116*x^3 + 720*x^4 + 4656*x^5 + 30996*x^6 +...
= C(2x)^2 * A(x^3*C(2x)^4) where
C(2x) = 1 + 2*x + 8*x^2 + 40*x^3 + 224*x^4 + 1344*x^5 + 8448*x^6 +...
and C(x) is g.f. of the Catalan numbers (A000108): C(x) = 1 + x*C(x)^2.
		

Crossrefs

Cf. A120914, A120916 (square-root), A120917, A120918; A000108; variants: A092684, A092687, A120895, A120899, A120920.

Programs

  • PARI
    {a(n)=local(A=1+x,C=(1/x*serreverse(x/(1+4*x+4*x^2+x*O(x^n))))^(1/2)); for(i=0,n,A=C^2*subst(A,x,x^3*C^4 +x*O(x^n)));polcoeff(A,n,x)}

A120896 Central terms of triangle A120894 (cascadence of 1+x+x^2).

Original entry on oeis.org

1, 1, 2, 5, 10, 27, 73, 189, 518, 1413, 3857, 10707, 29804, 83365, 234665, 662654, 1878059, 5341302, 15231940, 43552610, 124829236, 358537455, 1031835260, 2974872009, 8590929683, 24847042484, 71964879243, 208704926659
Offset: 0

Views

Author

Paul D. Hanna, Jul 14 2006

Keywords

Crossrefs

Showing 1-6 of 6 results.