cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A120898 Cascadence of 1+2x+x^2; a triangle, read by rows of 2n+1 terms, that retains its original form upon convolving each row with [1,2,1] and then letting excess terms spill over from each row into the initial positions of the next row such that only 2n+1 terms remain in row n for n>=0.

Original entry on oeis.org

1, 2, 1, 2, 5, 6, 5, 2, 5, 16, 22, 18, 14, 12, 5, 16, 54, 78, 72, 58, 43, 38, 37, 16, 54, 186, 282, 280, 231, 182, 156, 128, 123, 124, 54, 186, 654, 1030, 1073, 924, 751, 622, 535, 498, 425, 418, 426, 186, 654, 2338, 3787, 4100, 3672, 3048, 2530, 2190, 1956, 1766
Offset: 0

Views

Author

Paul D. Hanna, Jul 14 2006

Keywords

Comments

In this case, the g.f. of column 0, H(x), satisfies: H(x) = H(x*G^2)*G/x where G satisfies: G = x*(1+2G+G^2), so that 1+G = g.f. of Catalan numbers (A000108). More generally, the cascadence of polynomial F(x) of degree d, F(0)=1, is a triangle with d*n+1 terms in row n where the g.f. H(x) of column 0 satisfies: H(x) = H(x*G^d)*G/x where G = x*F(G); thus G = series_reversion(x/F(x)), or, equivalently, [x^n] G = [x^n] x*F(x)^n/n for n>=1.
Further, the g.f. of the cascadence triangle for polynomial F(x) of degree d is given by: A(x,y) = ( x*H(x) - y*H(x*y^d) )/( x*F(y) - y ), where H(x) = G*H(x*G^d)/x and G = x*F(G). - Paul D. Hanna, Jul 17 2006

Examples

			Triangle begins:
1;
2, 1, 2;
5, 6, 5, 2, 5;
16, 22, 18, 14, 12, 5, 16;
54, 78, 72, 58, 43, 38, 37, 16, 54;
186, 282, 280, 231, 182, 156, 128, 123, 124, 54, 186;
654, 1030, 1073, 924, 751, 622, 535, 498, 425, 418, 426, 186, 654;
2338, 3787, 4100, 3672, 3048, 2530, 2190, 1956, 1766, 1687, 1456, 1452, 1494, 654, 2338; ...
Convolution of [1,2,1] with each row produces:
[1,2,1]*[1] = [1,2,1];
[1,2,1]*[2,1,2] = [2,5,6,5,2];
[1,2,1]*[5,6,5,2,5] = [5,16,22,18,14,12,5];
[1,2,1]*[16,22,18,14,12,5,16] = [16,54,78,72,58,43,38,37,16];
These convoluted rows, when concatenated, yield the sequence:
1,2,1, 2,5,6,5,2, 5,16,22,18,14,12,5, 16,54,78,72,58,43,38,37,16, ...
which equals the concatenated rows of this original triangle:
1, 2,1,2, 5,6,5,2,5, 16,22,18,14,12,5,16, 54,78,72,58,43,38,37,16,54,
		

Crossrefs

Cf. A120899 (column 0), A120901 (central terms), A120902 (row sums), A000108 (Catalan); variants: A092683, A092686, A120894.

Programs

  • PARI
    T(n,k)=if(2*n
    				
  • PARI
    /* Generated by the G.F.: */
    {T(n,k)=local(A,F=1+2*x+x^2,d=2,G=x,H=1+x,S=ceil(log(n+1)/log(d+1))); for(i=0,n,G=x*subst(F,x,G+x*O(x^n)));for(i=0,S,H=subst(H,x,x*G^d+x*O(x^n))*G/x); A=(x*H-y*subst(H,x,x*y^d +x*O(x^n)))/(x*subst(F,x,y)-y); polcoeff(polcoeff(A,n,x),k,y)}
    for(n=0, 10, for(k=0, 2*n, print1(T(n, k), ", ")); print()) \\ Paul D. Hanna, Jul 17 2006

Formula

G.f.: A(x,y) = ( x*H(x) - y*H(x*y^2) )/( x*F(y) - y ), where H(x) = G*H(x*G^2)/x, G = x*F(G), F(x)=1+2x+x^2. - Paul D. Hanna, Jul 17 2006

A120895 G.f. satisfies: A(x) = G(x)*A(x^3*G(x)^2) where G(x) is the g.f. of the Motzkin numbers (A001006).

Original entry on oeis.org

1, 1, 2, 5, 12, 30, 78, 206, 552, 1498, 4105, 11340, 31541, 88237, 248076, 700478, 1985397, 5646129, 16104378, 46056513, 132031176, 379315946, 1091890772, 3148736064, 9095091878, 26310816944, 76219704957, 221085782559, 642058752476, 1866693825362, 5432795508417
Offset: 0

Views

Author

Paul D. Hanna, Jul 14 2006

Keywords

Comments

Equals column 0 and main diagonal of triangle A120894 (cascadence of 1+x+x^2).

Examples

			A(x) = 1 + x + 2*x^2 + 5*x^3 + 12*x^4 + 30*x^5 + 78*x^6 + 206*x^7+...
= G(x)*A(x^3*G(x)^2) where
G(x) = 1 + x + 2*x^2 + 4*x^3 + 9*x^4 + 21*x^5 + 51*x^6 + 127*x^7 +...
is the g.f. of the Motzkin numbers (A001006) so that G(x) satisfies:
G(x) = 1 + x*G(x) + x^2*G(x)^2.
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x,G=1/x*serreverse(x/(1+x+x^2+x*O(x^n)))); for(i=0,n,A=G*subst(A,x,x^3*G^2 +x*O(x^n)));polcoeff(A,n,x)}

A120920 G.f. satisfies: A(x) = G(x)^3 * A(x^4*G(x)^9), where G(x) is the g.f. of the number of ternary trees (A001764): G(x) = 1 + x*G(x)^3.

Original entry on oeis.org

1, 3, 12, 55, 276, 1464, 8058, 45543, 262626, 1538607, 9130446, 54761628, 331403447, 2021021082, 12407102937, 76611488305, 475493441604, 2964664310319, 18560063203353, 116621922800283, 735236268006654
Offset: 0

Views

Author

Paul D. Hanna, Jul 17 2006

Keywords

Comments

Column 0 of triangle A120919 (cascadence of (1+x)^3).

Examples

			A(x) = 1 + 3*x + 12*x^2 + 55*x^3 + 276*x^4 + 1464*x^5 + 8058*x^6 +...
= G(x)^3 * A(x^4*G(x)^9) where
G(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + 1428*x^6 +...
is g.f. of A001764: G(x) = 1 + x*G(x)^3.
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x,G=(1/x*serreverse(x/(1+3*x+3*x^2+x^3+x*O(x^n))))^(1/3)); for(i=0,n,A=G^3*subst(A,x,x^4*G^9 +x*O(x^n)));polcoeff(A,n,x)}

A120902 Row sums of triangle A120898 (cascadence of 1+2x+x^2).

Original entry on oeis.org

1, 5, 23, 103, 450, 1932, 8196, 34468, 143997, 598463, 2476936, 10216818, 42023225, 172436363, 706132290, 2886574198, 11781962631, 48025519977, 195530083266, 795241236228, 3231290822280, 13118557603984, 53218706064038
Offset: 0

Views

Author

Paul D. Hanna, Jul 14 2006

Keywords

Crossrefs

A120915 G.f. satisfies: A(x) = C(2x)^2 * A(x^3*C(2x)^4), where C(x) is the g.f. of the Catalan numbers (A000108).

Original entry on oeis.org

1, 4, 20, 116, 720, 4656, 30996, 210896, 1459536, 10239796, 72651184, 520328112, 3756512912, 27307671040, 199705789248, 1468209751856, 10844681408064, 80437588353600, 598867568439828, 4473784063109904, 33524058847464912
Offset: 0

Views

Author

Paul D. Hanna, Jul 17 2006

Keywords

Comments

Column 0 of triangle A120914 (cascadence of (1+2x)^2).

Examples

			A(x) = 1 + 4*x + 20*x^2 + 116*x^3 + 720*x^4 + 4656*x^5 + 30996*x^6 +...
= C(2x)^2 * A(x^3*C(2x)^4) where
C(2x) = 1 + 2*x + 8*x^2 + 40*x^3 + 224*x^4 + 1344*x^5 + 8448*x^6 +...
and C(x) is g.f. of the Catalan numbers (A000108): C(x) = 1 + x*C(x)^2.
		

Crossrefs

Cf. A120914, A120916 (square-root), A120917, A120918; A000108; variants: A092684, A092687, A120895, A120899, A120920.

Programs

  • PARI
    {a(n)=local(A=1+x,C=(1/x*serreverse(x/(1+4*x+4*x^2+x*O(x^n))))^(1/2)); for(i=0,n,A=C^2*subst(A,x,x^3*C^4 +x*O(x^n)));polcoeff(A,n,x)}

A120900 G.f. satisfies: A(x) = C(x)*A(x^3*C(x)^4), where C(x) is the g.f. of the Catalan numbers (A000108).

Original entry on oeis.org

1, 1, 2, 6, 19, 62, 209, 722, 2539, 9054, 32654, 118876, 436171, 1611067, 5984943, 22344455, 83786875, 315397144, 1191324649, 4513742858, 17149228138, 65318912291, 249356597492, 953902701488, 3656057618727, 14037222220896
Offset: 0

Views

Author

Paul D. Hanna, Jul 14 2006

Keywords

Comments

Self-convolution equals A120899, which equals column 0 of triangle A120898 (cascadence of 1+2x+x^2).

Examples

			A(x) = 1 + x + 2*x^2 + 6*x^3 + 19*x^4 + 62*x^5 + 209*x^6 + 722*x^7 +...
= C(x) * A(x^3*C(x)^4) where
C(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 +...
is the g.f. of the Catalan numbers (A000108): C(x) = 1 + x*C(x)^2.
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x,C=(1/x*serreverse(x/(1+2*x+x^2+x*O(x^n))))^(1/2)); for(i=0,n,A=C*subst(A,x,x^3*C^4 +x*O(x^n)));polcoeff(A,n,x)}

A120901 Central terms of triangle A120898 (cascadence of 1+2x+x^2).

Original entry on oeis.org

1, 1, 5, 14, 43, 156, 535, 1956, 7175, 26418, 98375, 367176, 1378022, 5193625, 19641164, 74535167, 283651169, 1082274210, 4139129734, 15863315213, 60913982404, 234317240601, 902804442380, 3483620505111, 13460665855850
Offset: 0

Views

Author

Paul D. Hanna, Jul 14 2006

Keywords

Crossrefs

Showing 1-7 of 7 results.