A092694 Product of iterated phi(n).
1, 1, 2, 2, 8, 2, 12, 8, 12, 8, 80, 8, 96, 12, 64, 64, 1024, 12, 216, 64, 96, 80, 1760, 64, 1280, 96, 216, 96, 2688, 64, 1920, 1024, 1280, 1024, 1536, 96, 3456, 216, 1536, 1024, 40960, 96, 4032, 1280, 1536, 1760, 80960, 1024, 4032, 1280, 32768, 1536, 79872, 216
Offset: 1
Examples
a(100) = 40960 because the iterations of phi (40, 16, 8, 4, 2, 1) have a product of 40960.
Links
- T. D. Noe, Table of n, a(n) for n=1..10000
- T. D. Noe, Plot of A092694
Crossrefs
Programs
-
Haskell
a092694 n = snd $ until ((== 1) . fst) f (a000010 n, 1) where f (x, p) = (a000010 x, p * x) -- Reinhard Zumkeller, Jan 30 2014
-
Mathematica
nMax=100; a=Table[1, {nMax}]; Do[e=EulerPhi[n]; a[[n]]=e*a[[e]], {n, 2, nMax}]; a
-
Python
from sympy import totient from math import prod def f(n): m = n while m > 1: m = totient(m) yield m def A092694(n): return prod(f(n)) # Chai Wah Wu, Nov 14 2021
Formula
a(1) = 1, a(n) = phi(n) * a(phi(n))
Comments