A092695 Number of positive integers less than or equal to n which are not divisible by the primes 2,3,5,7.
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 10, 10, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 14, 14, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 17, 17, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19
Offset: 0
Keywords
Examples
x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10 + 2*x^11 + ...
References
- John Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 62.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
- Index entries for two-way infinite sequences
Programs
-
Haskell
a092695 n = a092695_list !! n a092695_list = scanl (+) 0 $ map (fromEnum . (> 7)) (8 : tail a020639_list) -- Reinhard Zumkeller, Mar 26 2012
-
Mathematica
Accumulate @ Table[Boole @ CoprimeQ[n, 210], {n, 0, 100}] (* Amiram Eldar, Dec 06 2020 *)
-
PARI
{a(n) = n - n\2 - n\3 - n\5 - n\7 + n\6 + n\10 + n\14 + n\15 + n\21 - n\30 + n\35 - n\42 - n\70 - n\105 + n\210}
-
PARI
{a(n) = if( n<0, -a(-1 - n), sum( k=0, n, 1==gcd( k, 210)))}
Formula
G.f.: (x * P172 * P36) / (e(1) * e(210)) where e(n) = 1 - x^n, P36 = e(16) * e(20) * e(24) / (e(6) * e(8) * e(10)) is a polynomial of degree 36 and P172 is a polynomial of degree 172.
a(n + 210) = a(n) + 48.
a(n) = -a(-1 - n) for n < 0.
a(n) ~ (8/35)*n. - Amiram Eldar, Dec 06 2020
Comments