cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A092754 a(1)=1, a(2n)=2a(n)+1, a(2n+1)=2a(n)+2.

Original entry on oeis.org

1, 3, 4, 7, 8, 9, 10, 15, 16, 17, 18, 19, 20, 21, 22, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 127, 128, 129, 130, 131, 132
Offset: 1

Views

Author

Benoit Cloitre, Apr 13 2004

Keywords

Comments

More generally the sequence b(1)=1, b(2n)=2b(n)+x, b(2n+1)=2b(n)+y is given by the formula b(n)=A053644(n)+x*(n-A053644(n))+y*(A053644(n)-1).

Crossrefs

Cf. A053644 (x=y=0), A054429(x=-1, y=+1), A062050(x=+1, y=-1).
Cf. A206332 (complement).
Cf. A004754.

Programs

  • Haskell
    a092754 n = if n < 2 then n else 2 * a092754 n' + m + 1
                where (n',m) = divMod n 2
    a092754_list = map a092754 [1..]
    -- Reinhard Zumkeller, May 07 2012
  • PARI
    a(n)=if(n<2,1,if(n%2,a(n-1)+1,a(n/2)*2+1))
    
  • PARI
    a(n) = n + 1<Kevin Ryde, Jun 19 2021
    

Formula

a(n) = 2^floor(log(n)/log(2)) + n - 1.
a(n) = A004754(n) - 1. - Rémy Sigrist, May 05 2019