cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A092815 Schmidt's problem sum for r = 5.

Original entry on oeis.org

1, 33, 15553, 27748833, 61371200001, 155741521320033, 487874692844719489, 1730097641006678817249, 6559621957318406477234689, 26511434186466256434467280033, 113203209912753307355868621335553, 503697803885283278416185835107071649, 2318764463485777975432760948801307487809
Offset: 0

Views

Author

Eric W. Weisstein, Mar 06 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n, k]^5 Binomial[n+k, k]^5, {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Nov 04 2012 *)
  • PARI
    a(n)=sum(k=0,n,binomial(n,k)^5*binomial(n+k,k)^5); \\ Joerg Arndt, May 11 2013

Formula

a(n) = sum(k=0..n, binomial(n,k)^5 * binomial(n+k,k)^5 ). - corrected by Vaclav Kotesovec, Nov 04 2012
a(n) ~ (1+sqrt(2))^(5*(2n+1))/(2^(13/4)*(Pi*n)^(9/2)*sqrt(5)). - Vaclav Kotesovec, Nov 04 2012

Extensions

Prepended missing a(0)=1, Joerg Arndt, May 11 2013