A218689
Sum_{k=0..n} C(n,k)^6*C(n+k,k)^6.
Original entry on oeis.org
1, 65, 93313, 795985985, 8178690000001, 93706344780048065, 1453730786373283012225, 26552497154713885161031745, 513912636558068387176582890625, 10769375530849394271690330588432065, 243282405272735566295972089793676717313, 5763401688773271719278313934033057270226625
Offset: 0
-
Table[Sum[Binomial[n,k]^6*Binomial[n+k,k]^6,{k,0,n}],{n,0,20}]
A092813
Schmidt's problem sum for r = 3.
Original entry on oeis.org
1, 9, 433, 36729, 3824001, 450954009, 58160561761, 7989733343097, 1149808762915201, 171540347534028009, 26338900959100106433, 4140153621102790276137, 663592912043903970182289, 108127319237119098011204937, 17868369859451104998973346433, 2989001418301890511076878884729
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- S. Hassani, J.-M. Maillard, and N. Zenine, On the diagonals of rational functions: the minimal number of variables (unabridged version), arXiv:2502.05543 [math-ph], 2025. See p. 11.
- Vaclav Kotesovec, Asymptotic of generalized Apery sequences with powers of binomial coefficients, Nov 04 2012.
- Eric Weisstein's World of Mathematics, Schmidt's Problem.
-
Table[Sum[Binomial[n,k]^3 Binomial[n+k,k]^3,{k,0,n}],{n, 0, 20}] (*Harvey P. Dale, Apr 26 2011 *)
-
a(n)=sum(k=0,n,binomial(n,k)^3*binomial(n+k,k)^3); \\ Joerg Arndt, May 11 2013
A092814
Schmidt's problem sum for r = 4.
Original entry on oeis.org
1, 17, 2593, 990737, 473940001, 261852948017, 166225611652129, 115586046457265681, 85467827222155042849, 66421846251482628852017, 53755021948680412765238593, 44947131400352317819689905201, 38613445585740736549461528111649, 33942058336306457714420306982430001
Offset: 0
-
Table[Sum[Binomial[n, k]^4 Binomial[n+k, k]^4, {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Nov 04 2012 *)
a[k_]:= HypergeometricPFQ[{-k,-k,-k,-k,1+k,1+k,1+k,1+k}, {1,1,1,1,1,1,1}, 1]
Table[ a[k], {k, 0, 20}] (* Gerry Martens, Sep 26 2022 *)
-
a(n)=sum(k=0,n,binomial(n,k)^4*binomial(n+k,k)^4); \\ Joerg Arndt, May 11 2013
A218693
a(n) = Sum_{k=0..n} C(n,k)*C(n+k,k)^3.
Original entry on oeis.org
1, 9, 271, 11193, 535251, 27854739, 1531656211, 87547358649, 5149886133907, 309721191497259, 18957806551405701, 1177134132932168739, 73964787438524189871, 4694347514292389411103, 300499277330710307643771, 19378727805024033594228153, 1257802636907811605342461587
Offset: 0
-
Table[Sum[Binomial[n,k]*Binomial[n+k,k]^3,{k,0,n}],{n,0,20}]
a[n_] := HypergeometricPFQ[{-n, n+1, n+1 ,n+1},{1, 1, 1}, -1]; Table[a[n],{n,0,16}] (* Detlef Meya, May 25 2024 *)
A336873
a(n) = Sum_{k=0..n} (binomial(n+k,k) * binomial(n,k))^n.
Original entry on oeis.org
1, 3, 73, 36729, 473940001, 155741521320033, 1453730786373283012225, 415588116056535702096428038017, 3278068950996636050857475073848209555969, 756475486389705843580676191270930552553654909184513, 5850304627708628483969594929628923064185219454493588333628772353
Offset: 0
-
[(&+[(Binomial(2*j,j)*Binomial(n+j,n-j))^n: j in [0..n]]): n in [0..20]]; // G. C. Greubel, Aug 31 2022
-
a[n_] := Sum[(Binomial[n+k, k] * Binomial[n, k])^n, {k, 0, n} ]; Array[a, 11, 0] (* Amiram Eldar, Aug 06 2020 *)
-
{a(n) = sum(k=0, n, (binomial(n+k,k)*binomial(n,k))^n)}
-
def A336873(n): return sum((binomial(2*j,j)*binomial(n+j, n-j))^n for j in (0..n))
[A336873(n) for n in (0..20)] # G. C. Greubel, Aug 31 2022
A379610
a(n) = Sum_{j=0..n} binomial(2*j,j)^4 * binomial(n,j)^2 * Sum_{k=0..n} binomial(k+j,k-j)^2 * binomial(2*j,n-k) * binomial(2*j,k-j).
Original entry on oeis.org
1, 16, 2576, 1383568, 873960976, 615833930816, 526152430612496, 502263183380000576, 507670642053018634768, 542989589742114444434176, 609997002301177503142835776, 710665335270156912049219940096, 853208134042451055649274133396496, 1051685299255545900736463773134099328
Offset: 0
-
a(n) = sum(j=0, n, binomial(2*j, j)^4*binomial(n, j)^2*sum(k=0, n, binomial(k+j, k-j)^2*binomial(2*j, n-k)*binomial(2*j, k-j)));
Showing 1-6 of 6 results.
Comments