cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A218689 Sum_{k=0..n} C(n,k)^6*C(n+k,k)^6.

Original entry on oeis.org

1, 65, 93313, 795985985, 8178690000001, 93706344780048065, 1453730786373283012225, 26552497154713885161031745, 513912636558068387176582890625, 10769375530849394271690330588432065, 243282405272735566295972089793676717313, 5763401688773271719278313934033057270226625
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 04 2012

Keywords

Crossrefs

Cf. A001850 (p=1), A005259 (p=2), A092813 (p=3), A092814 (p=4), A092815 (p=5).

Programs

  • Mathematica
    Table[Sum[Binomial[n,k]^6*Binomial[n+k,k]^6,{k,0,n}],{n,0,20}]

Formula

a(n) ~ (1+sqrt(2))^(6*(2n+1))/(2^(17/4)*(Pi*n)^(11/2)*sqrt(3))
Generally, Sum_{k=0..n} C(n,k)^p*C(n+k,k)^p is asymptotic to (1+sqrt(2))^(p*(2*n+1))/(2^(p/2+3/4)*(Pi*n)^(p-1/2)*sqrt(p)) * (1-(2*p-1)/(4*n)+(4*p^2+24*p-19)*sqrt(2)/(96*p*n))

A092813 Schmidt's problem sum for r = 3.

Original entry on oeis.org

1, 9, 433, 36729, 3824001, 450954009, 58160561761, 7989733343097, 1149808762915201, 171540347534028009, 26338900959100106433, 4140153621102790276137, 663592912043903970182289, 108127319237119098011204937, 17868369859451104998973346433, 2989001418301890511076878884729
Offset: 0

Views

Author

Eric W. Weisstein, Mar 06 2004

Keywords

Comments

Apparently, the diagonal of 1/((1 - x - y)*(1 - z - t)*(1 - u - w) - x*y*z*t*u*w). - Peter Bala, Jun 30 2023

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n,k]^3 Binomial[n+k,k]^3,{k,0,n}],{n, 0, 20}] (*Harvey P. Dale, Apr 26 2011 *)
  • PARI
    a(n)=sum(k=0,n,binomial(n,k)^3*binomial(n+k,k)^3); \\ Joerg Arndt, May 11 2013

Formula

a(n) = Sum_{k=0..n} binomial(n,k)^3 * binomial(n+k,k)^3.
a(n) ~ (1+sqrt(2))^(3*(2*n+1))/(2^(9/4)*(Pi*n)^(5/2)*sqrt(3)). - Vaclav Kotesovec, Nov 04 2012

Extensions

Prepended missing a(0)=1, Joerg Arndt, May 11 2013

A092815 Schmidt's problem sum for r = 5.

Original entry on oeis.org

1, 33, 15553, 27748833, 61371200001, 155741521320033, 487874692844719489, 1730097641006678817249, 6559621957318406477234689, 26511434186466256434467280033, 113203209912753307355868621335553, 503697803885283278416185835107071649, 2318764463485777975432760948801307487809
Offset: 0

Views

Author

Eric W. Weisstein, Mar 06 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n, k]^5 Binomial[n+k, k]^5, {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Nov 04 2012 *)
  • PARI
    a(n)=sum(k=0,n,binomial(n,k)^5*binomial(n+k,k)^5); \\ Joerg Arndt, May 11 2013

Formula

a(n) = sum(k=0..n, binomial(n,k)^5 * binomial(n+k,k)^5 ). - corrected by Vaclav Kotesovec, Nov 04 2012
a(n) ~ (1+sqrt(2))^(5*(2n+1))/(2^(13/4)*(Pi*n)^(9/2)*sqrt(5)). - Vaclav Kotesovec, Nov 04 2012

Extensions

Prepended missing a(0)=1, Joerg Arndt, May 11 2013

A218693 a(n) = Sum_{k=0..n} C(n,k)*C(n+k,k)^3.

Original entry on oeis.org

1, 9, 271, 11193, 535251, 27854739, 1531656211, 87547358649, 5149886133907, 309721191497259, 18957806551405701, 1177134132932168739, 73964787438524189871, 4694347514292389411103, 300499277330710307643771, 19378727805024033594228153, 1257802636907811605342461587
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 04 2012

Keywords

Crossrefs

Cf.
A001850 (p=1, q=1),
A112019 (p=1, q=2),
A005258 (p=2, q=1),
A005259 (p=2, q=2),
A111968 (p=2, q=3),
A014178 (p=3, q=1),
A014180 (p=3, q=2),
A092813 (p=3, q=3),
A218690 (p=4, q=2),
A092814 (p=4, q=4),
A092815 (p=5, q=5),
A218692 (p=6, q=3),
A218689 (p=6, q=6).

Programs

  • Mathematica
    Table[Sum[Binomial[n,k]*Binomial[n+k,k]^3,{k,0,n}],{n,0,20}]
    a[n_] := HypergeometricPFQ[{-n, n+1, n+1 ,n+1},{1, 1, 1}, -1]; Table[a[n],{n,0,16}] (* Detlef Meya, May 25 2024 *)

Formula

Recurrence: 4*(n-1)*n^3*(29412*n^4 - 224352*n^3 + 632931*n^2 - 781692*n + 356309)*a(n) = 2*(n-1)*(4176504*n^7 - 38122740*n^6 + 140783586*n^5 - 270139161*n^4 + 288226505*n^3 - 170040251*n^2 + 51625509*n - 6283008)*a(n-1) + 2*(1647072*n^8 - 19152000*n^7 + 94636812*n^6 - 258386460*n^5 + 423728203*n^4 - 423743982*n^3 + 249392728*n^2 - 77793627*n + 9736704)*a(n-2) + 2*(n-2)*(235296*n^7 - 2618352*n^6 + 11905158*n^5 - 28432149*n^4 + 38188669*n^3 - 28610816*n^2 + 10954716*n - 1618272)*a(n-3) - (n-2)*(29412*n^4 - 106704*n^3 + 136347*n^2 - 71238*n + 12608)*(n-3)^3*a(n-4).
a(n) ~ (1+r)^(6*n+7/2)/r^(4*n+7/2)/(4*Pi^(3/2)*n^(3/2))*sqrt((1-r)/(2-r)), where r is positive real root of the equation (1-r)*(1+r)^3=r^4, r = 0.90340819201887...
Generally, Sum_{k=0..n} C(n,k)^p*C(n+k,k)^q is asymptotic to sqrt((r*(1-r^2))/((p+q+(p-q)*r)*(2*Pi*n)^(p+q-1))) * (1+r)^(q*n)/(1-r)^(p*n+p), where r is positive real root of the equation (1-r)^p*(1+r)^q=r^(p+q). - Vaclav Kotesovec, Nov 07 2012
a(n) = hypergeom([-n, n+1, n+1, n+1],[1, 1, 1], -1). - Detlef Meya, May 25 2024

A336873 a(n) = Sum_{k=0..n} (binomial(n+k,k) * binomial(n,k))^n.

Original entry on oeis.org

1, 3, 73, 36729, 473940001, 155741521320033, 1453730786373283012225, 415588116056535702096428038017, 3278068950996636050857475073848209555969, 756475486389705843580676191270930552553654909184513, 5850304627708628483969594929628923064185219454493588333628772353
Offset: 0

Views

Author

Seiichi Manyama, Aug 06 2020

Keywords

Crossrefs

Programs

  • Magma
    [(&+[(Binomial(2*j,j)*Binomial(n+j,n-j))^n: j in [0..n]]): n in [0..20]]; // G. C. Greubel, Aug 31 2022
    
  • Mathematica
    a[n_] := Sum[(Binomial[n+k, k] * Binomial[n, k])^n, {k, 0, n} ]; Array[a, 11, 0] (* Amiram Eldar, Aug 06 2020 *)
  • PARI
    {a(n) = sum(k=0, n, (binomial(n+k,k)*binomial(n,k))^n)}
    
  • SageMath
    def A336873(n): return sum((binomial(2*j,j)*binomial(n+j, n-j))^n for j in (0..n))
    [A336873(n) for n in (0..20)] # G. C. Greubel, Aug 31 2022

Formula

a(n)^(1/n) ~ (1 + sqrt(2))^(2*n + 1) / (Pi*sqrt(2)*n). - Vaclav Kotesovec, Jul 10 2021
Showing 1-5 of 5 results.