A092813
Schmidt's problem sum for r = 3.
Original entry on oeis.org
1, 9, 433, 36729, 3824001, 450954009, 58160561761, 7989733343097, 1149808762915201, 171540347534028009, 26338900959100106433, 4140153621102790276137, 663592912043903970182289, 108127319237119098011204937, 17868369859451104998973346433, 2989001418301890511076878884729
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- S. Hassani, J.-M. Maillard, and N. Zenine, On the diagonals of rational functions: the minimal number of variables (unabridged version), arXiv:2502.05543 [math-ph], 2025. See p. 11.
- Vaclav Kotesovec, Asymptotic of generalized Apery sequences with powers of binomial coefficients, Nov 04 2012.
- Eric Weisstein's World of Mathematics, Schmidt's Problem.
-
Table[Sum[Binomial[n,k]^3 Binomial[n+k,k]^3,{k,0,n}],{n, 0, 20}] (*Harvey P. Dale, Apr 26 2011 *)
-
a(n)=sum(k=0,n,binomial(n,k)^3*binomial(n+k,k)^3); \\ Joerg Arndt, May 11 2013
A092815
Schmidt's problem sum for r = 5.
Original entry on oeis.org
1, 33, 15553, 27748833, 61371200001, 155741521320033, 487874692844719489, 1730097641006678817249, 6559621957318406477234689, 26511434186466256434467280033, 113203209912753307355868621335553, 503697803885283278416185835107071649, 2318764463485777975432760948801307487809
Offset: 0
-
Table[Sum[Binomial[n, k]^5 Binomial[n+k, k]^5, {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Nov 04 2012 *)
-
a(n)=sum(k=0,n,binomial(n,k)^5*binomial(n+k,k)^5); \\ Joerg Arndt, May 11 2013
A092814
Schmidt's problem sum for r = 4.
Original entry on oeis.org
1, 17, 2593, 990737, 473940001, 261852948017, 166225611652129, 115586046457265681, 85467827222155042849, 66421846251482628852017, 53755021948680412765238593, 44947131400352317819689905201, 38613445585740736549461528111649, 33942058336306457714420306982430001
Offset: 0
-
Table[Sum[Binomial[n, k]^4 Binomial[n+k, k]^4, {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Nov 04 2012 *)
a[k_]:= HypergeometricPFQ[{-k,-k,-k,-k,1+k,1+k,1+k,1+k}, {1,1,1,1,1,1,1}, 1]
Table[ a[k], {k, 0, 20}] (* Gerry Martens, Sep 26 2022 *)
-
a(n)=sum(k=0,n,binomial(n,k)^4*binomial(n+k,k)^4); \\ Joerg Arndt, May 11 2013
A111968
a(n) = Sum_{k=0..n} C(n,k)^2*C(n+k,k)^3, where C := binomial.
Original entry on oeis.org
1, 9, 325, 17577, 1152501, 84505509, 6664647781, 553268669865, 47710914870133, 4236909872278509, 385139801423145825, 35681384898462925125, 3358273513450241419125, 320308335005997679093125, 30900030366269721747776325, 3010365811746267487293617577
Offset: 0
-
Table[Sum[Binomial[n,k]^2*Binomial[n+k,k]^3,{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Nov 04 2012 *)
-
a(n) = sum(k=0, n, binomial(n, k)^2*binomial(n+k,k)^3); \\ Michel Marcus, Mar 10 2016
A112019
a(n) = Sum_{k=0..n} binomial(n,k) * binomial(n+k,k)^2.
Original entry on oeis.org
1, 5, 55, 749, 11251, 178835, 2949115, 49906925, 860905315, 15071939255, 266982872905, 4774722189275, 86070844191775, 1561948324845095, 28507384046515555, 522867506128197869, 9631571375362268515, 178094411589895650815, 3304192479145474141741, 61487420580006795749999
Offset: 0
-
seq(add((multinomial(n+k,n-k,k,k))*binomial(n+k,k),k=0..n),n=0..19); # Zerinvary Lajos, Oct 18 2006
ogf := hypergeom([1/12,5/12],[1], -1728*(x^3+5*x^2+39*x-2)*x^4 / (x^4+4*x^3+30*x^2-20*x+1)^3 ) / (x^4+4*x^3+30*x^2-20*x+1)^(1/4);
series(ogf, x=0, 30); # Mark van Hoeij, Jan 22 2013
-
Table[HypergeometricPFQ[{-n, 1 + n, 1 + n}, {1, 1}, -1], {n, 0, 20}] (* Olivier Gérard, Apr 23 2009 *)
Table[Sum[Binomial[n,k]*Binomial[n+k,k]^2,{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Nov 04 2012 *)
-
a(n) = sum(k=0, n, binomial(n,k)*binomial(n+k,k)^2); \\ Michel Marcus, Mar 09 2016
A014178
a(n) = Sum_{k = 0..n} binomial(n,k)^3*binomial(n+k,k).
Original entry on oeis.org
1, 3, 31, 399, 5871, 93753, 1577479, 27556623, 495001327, 9085988613, 169675769781, 3213444254133, 61573700137431, 1191526503165729, 23252920338835911, 457112339182896399, 9043566887755775727, 179928068420530483389, 3597714616543167088921
Offset: 0
-
f := n->sum( 'binomial(n,k)^3*binomial(n+k,k)^1','k'=0..n);
-
Table[Sum[Binomial[n,k]^3*Binomial[n+k,k],{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Nov 04 2012 *)
-
a(n)=sum(k=0,n, binomial(n,k)^3*binomial(n+k,k) ); \\ Joerg Arndt, May 04 2013
A014180
Sum_{k = 0..n} binomial(n,k)^3*binomial(n+k,k)^2.
Original entry on oeis.org
1, 5, 109, 3533, 133501, 5629505, 254899765, 12129399245, 599084606845, 30455459491505, 1584249399505609, 83970120618566825, 4520585403820052581, 246592348286170615097, 13603606921687170927109, 757808346139996787715533, 42575668004558257371188605, 2410024012619343278147357297
Offset: 0
-
Table[Sum[Binomial[n,k]^3*Binomial[n+k,k]^2,{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Nov 04 2012 *)
-
a(n)=sum(k=0,n, binomial(n,k)^3*binomial(n+k,k)^2 ); \\ Joerg Arndt, May 04 2013
A218693
a(n) = Sum_{k=0..n} C(n,k)*C(n+k,k)^3.
Original entry on oeis.org
1, 9, 271, 11193, 535251, 27854739, 1531656211, 87547358649, 5149886133907, 309721191497259, 18957806551405701, 1177134132932168739, 73964787438524189871, 4694347514292389411103, 300499277330710307643771, 19378727805024033594228153, 1257802636907811605342461587
Offset: 0
-
Table[Sum[Binomial[n,k]*Binomial[n+k,k]^3,{k,0,n}],{n,0,20}]
a[n_] := HypergeometricPFQ[{-n, n+1, n+1 ,n+1},{1, 1, 1}, -1]; Table[a[n],{n,0,16}] (* Detlef Meya, May 25 2024 *)
A336873
a(n) = Sum_{k=0..n} (binomial(n+k,k) * binomial(n,k))^n.
Original entry on oeis.org
1, 3, 73, 36729, 473940001, 155741521320033, 1453730786373283012225, 415588116056535702096428038017, 3278068950996636050857475073848209555969, 756475486389705843580676191270930552553654909184513, 5850304627708628483969594929628923064185219454493588333628772353
Offset: 0
-
[(&+[(Binomial(2*j,j)*Binomial(n+j,n-j))^n: j in [0..n]]): n in [0..20]]; // G. C. Greubel, Aug 31 2022
-
a[n_] := Sum[(Binomial[n+k, k] * Binomial[n, k])^n, {k, 0, n} ]; Array[a, 11, 0] (* Amiram Eldar, Aug 06 2020 *)
-
{a(n) = sum(k=0, n, (binomial(n+k,k)*binomial(n,k))^n)}
-
def A336873(n): return sum((binomial(2*j,j)*binomial(n+j, n-j))^n for j in (0..n))
[A336873(n) for n in (0..20)] # G. C. Greubel, Aug 31 2022
Showing 1-9 of 9 results.
Comments