A092843 a(n) = Sum_{k|n, k>1} phi(k-1), where phi() is the Euler phi function.
0, 1, 1, 3, 2, 6, 2, 9, 5, 9, 4, 18, 4, 15, 9, 17, 8, 26, 6, 29, 11, 17, 10, 46, 10, 25, 17, 35, 12, 48, 8, 47, 21, 29, 20, 62, 12, 43, 23, 59, 16, 68, 12, 61, 33, 35, 22, 100, 18, 59, 29, 59, 24, 90, 24, 81, 31, 49, 28, 136, 16, 69, 45, 83, 38, 86, 20, 97, 43, 83, 24, 160, 24, 85
Offset: 1
Keywords
Examples
a(6) = phi(2-1) + phi(3-1) + phi(6-1) = 1 + 1 + 4 = 6.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
Programs
-
Magma
f:= func< n | n eq 1 select 0 else EulerPhi(n-1) >; A092843:= func< n | (&+[f(d): d in Divisors(n)]) >; [A092843(n): n in [1..100]]; // G. C. Greubel, Jun 24 2024
-
Mathematica
f[n_] := Block[{k = Drop[Divisors[n], 1]}, Plus @@ EulerPhi[k - 1]]; Table[ f[n], {n, 75}] (* Robert G. Wilson v, Nov 12 2004 *)
-
PARI
a(n) = sumdiv(n, k, if (k>1, eulerphi(k-1))); \\ Michel Marcus, Jun 25 2024
-
SageMath
def A092843(n): return sum(euler_phi(k-1) for k in (1..n) if (k).divides(n)) [A092843(n) for n in range(1, 101)] # G. C. Greubel, Jun 24 2024
Formula
Conjecture: Sum_{k=1..n} a(k) ~ n^2/2. - Vaclav Kotesovec, Jun 25 2024
Extensions
More terms from Robert G. Wilson v, Nov 12 2004