cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A092885 Number of partitions of n in which no parts are multiples of 25.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176, 231, 297, 385, 490, 627, 792, 1002, 1255, 1575, 1957, 2435, 3008, 3715, 4560, 5597, 6831, 8334, 10121, 12280, 14841, 17921, 21560, 25914, 31050, 37162, 44352, 52877, 62876, 74685, 88507
Offset: 0

Views

Author

Michael Somos, Mar 10 2004

Keywords

Examples

			G.f. = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 + 22*x^8 + 30*x^9 + ...
G.f. = q + q^2 + 2*q^3 + 3*q^4 + 5*q^5 + 7*q^6 + 11*q^7 + 15*q^8 + 22*q^9 + 30*q^10 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ Product[ 1 - x^k, {k, 25, n, 25}] / Product[ 1 - x^k, {k, n}], {x, 0, n}];
    a[ n_] := SeriesCoefficient[(QPochhammer[ x^25] / QPochhammer[ x]), {x, 0, n}]; (* Michael Somos, May 13 2014 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^25 + A) / eta(x + A), n))};
    
  • PARI
    {a(n) = local(A, m); if( n<0, 0, n++; m=5; A = x + O(x^6); while( m
    				

Formula

Expansion of q^(-1) * eta(q^25) / eta(q) in powers of q.
Euler transform of period 25 sequence [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, ...].
Given g.f. A(x), then B(x) = x * A(x) satisfies 0 = f(B(x), B(x^2)) where f(u, v) = u^3 + v^3 - 5*(u*v)^2 - 2*u*v *(u+v) - u*v.
G.f.: Product_{k>0} (1 - x^(25*k)) / (1 - x^k).
a(n) ~ exp(4*Pi*sqrt(n)/5) / (5*sqrt(10)*n^(3/4)). - Vaclav Kotesovec, Oct 13 2015
a(n) = (1/n)*Sum_{k=1..n} A227131(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Jun 16 2017