A092893 Smallest starting value in a Collatz '3x+1' sequence such that the sequence contains exactly n tripling steps.
1, 5, 3, 17, 11, 7, 9, 25, 33, 43, 57, 39, 105, 135, 185, 123, 169, 219, 159, 379, 283, 377, 251, 167, 111, 297, 395, 263, 175, 233, 155, 103, 137, 91, 121, 161, 107, 71, 47, 31, 41, 27, 73, 97, 129, 171, 231, 313, 411, 543, 731, 487, 327, 859, 1145, 763, 1017, 1351
Offset: 0
Keywords
Examples
a(4)=11 because the Collatz sequence 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1 is the first sequence containing 4 tripling steps.
Links
- T. D. Noe, Table of n, a(n) for n=0..300
- Jeffrey R. Goodwin, The 3x+1 Problem and Integer Representations, Arxiv preprint arXiv:1504.03040 [math.NT], 2015.
- Eric Weisstein's World of Mathematics, Collatz Problem
- Index entries for sequences related to 3x+1 (or Collatz) problem
Programs
-
Mathematica
a[n_]:=Length[Select[NestWhileList[If[EvenQ[#],#/2,3#+1] &,n,#>1 &],OddQ]]; Table[i=1; While[a[i]!=n,i=i+2]; i,{n,58}] (* Jayanta Basu, May 27 2013 *)
Comments