cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A092897 Expansion of (1-x-x^2-3*x^3) / ((1+x)^2*(1-3*x)).

Original entry on oeis.org

1, 0, 4, 4, 24, 56, 188, 540, 1648, 4912, 14772, 44276, 132872, 398568, 1195756, 3587212, 10761696, 32285024, 96855140, 290565348, 871696120, 2615088280, 7845264924, 23535794684, 70607384144, 211822152336, 635466457108, 1906399371220, 5719198113768, 17157594341192
Offset: 0

Views

Author

Paul Barry, Mar 12 2004

Keywords

Comments

Binomial transform is A092896.

Crossrefs

Cf. A092896.

Programs

  • Magma
    [(3^n +4*0^n -(-1)^n*(1-4*n))/4: n in [0..30]]; // G. C. Greubel, Feb 20 2021
  • Mathematica
    LinearRecurrence[{1,5,3},{1,0,4,4},30] (* Harvey P. Dale, Mar 24 2018 *)
  • PARI
    Vec((1 - x - x^2 - 3*x^3) / ((1 + x)^2 * (1 - 3*x)) + O(x^30)) \\ Colin Barker, Nov 25 2016
    
  • Sage
    [(3^n +4*0^n -(-1)^n*(1-4*n))/4 for n in [0..30]]; # G. C. Greubel, Feb 20 2021
    

Formula

a(n) = (3^n + 4 * 0^n - (-1)^n + 4*n*(-1)^n)/4.
a(n) = a(n-1) + 5*a(n-2) + 3*a(n-3) for n>3. - Colin Barker, Nov 25 2016
E.g.f.: (4 +exp(3*x) -(1+4*x)*exp(-x))/4. - G. C. Greubel, Feb 20 2021