A092942 A Fibonacci sequence with "corrections" at every third step: -++-++-++-++-++..., i.e., at every 3rd step there is a subtraction instead of an addition.
0, 1, 1, 2, 3, 1, 4, 5, 1, 6, 7, 1, 8, 9, 1, 10, 11, 1, 12, 13, 1, 14, 15, 1, 16, 17, 1, 18, 19, 1, 20, 21, 1, 22, 23, 1, 24, 25, 1, 26, 27, 1, 28, 29, 1, 30, 31, 1, 32, 33, 1, 34, 35, 1, 36, 37, 1, 38, 39, 1, 40
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- A. Biryukov, Home page
- A. Biryukov and E. Kushilevitz, Improved Cryptanalysis of RC5, Lecture Notes in Computer Science 1403, Proceedings of EUROCRYPT'98, pp. 85-99, 1998.
- Index entries for linear recurrences with constant coefficients, signature (0,0,2,0,0,-1).
Programs
-
Magma
I:=[0,1,1,2,3,1]; [n le 6 select I[n] else 2*Self(n-3)-Self(n-6): n in [1..100]]; // Vincenzo Librandi, Jul 29 2017
-
Mathematica
CoefficientList[Series[-x (1 + x) (x^3 - 2 x^2 - 1) / ((x - 1)^2 (1 + x + x^2)^2), {x, 0, 100}], x] (* Vincenzo Librandi, Jul 29 2017 *)
Formula
a(n) = a(n-1) + a(n-2); if n = 3*k or n = 3*k+1, for k >= 1. a(n) = a(n-1) - a(n-2); if n = 3*k+2, for k >= 0. a(0) = 0, a(1) = 1;
G.f.: -x*(1+x)*(x^3 - 2*x^2 - 1) / ( (x-1)^2*(1 + x + x^2)^2 ). - R. J. Mathar, Dec 15 2014
a(n) = 2*a(n-3) - a(n-6). - Vincenzo Librandi, Jul 29 2017
a(n) = (1/18)*(8 + 8*n + (10-8*n)*cos(2*(n-2)*Pi/3) - sqrt(3)*sin(2*(n-2)*Pi/3) + sqrt(3)*sin(4*(n-2)*Pi/3)). - Wesley Ivan Hurt, Sep 25 2017
Comments