A092975 Consider all partitions of n into parts all of which are divisors of n; a(n) = maximal product of parts.
1, 2, 3, 4, 5, 9, 7, 16, 27, 32, 11, 81, 13, 128, 243, 256, 17, 729, 19, 1024, 2187, 2048, 23, 6561, 3125, 8192, 19683, 16384, 29, 59049, 31, 65536, 177147, 131072, 78125, 531441, 37, 524288, 1594323, 1048576, 41, 4782969, 43, 4194304, 14348907
Offset: 1
Keywords
Examples
a(12)= 81, the partition into divisors are (12), (6+6),(6+4+2),...(4+4+4), (4+3+3+2), ..., (3+3+3+3), (2+2+2+2+2+2) etc. as 3^4=81 > 4*3*3*2=72 > 2^6 =64.
Links
- Stanislav Sykora, Table of n, a(n) for n = 1..2000
Programs
-
Mathematica
Table[ Max[(n/Divisors[n])^Divisors[n]], {n, 1, 100}] (* Stefan Steinerberger, Apr 23 2006 *)
-
PARI
A092975(n)={my(p);if(n==1,return(1)); if(n%3==0,return(3^(n/3))); p = factor(n)[1,1];return (p^(n\p));}
Formula
a(n) = Max{(n/d)^d : d divides n }. - Vladeta Jovovic, Aug 06 2005
When n=3m then a(n)=3^m; otherwise, a(n)=q^(n/q), q being the smallest prime factor of n. - Stanislav Sykora, Jun 04 2014
Extensions
More terms from Vladeta Jovovic, Aug 06 2005
Comments