A092984 a(n) = the least k >= 1 such that n! + k is squarefree.
1, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1
Keywords
Examples
a(5) = 2 = 122 - 5! = 122 - 120 (as 121 = 11^2 is not squarefree).
Programs
-
Mathematica
Table[SelectFirst[Range@ 10, SquareFreeQ[n! + #] &], {n, 45}] (* Michael De Vlieger, Aug 23 2017 *) Table[Module[{k=1,c=n!},While[!SquareFreeQ[c+k],k++];k],{n,110}] (* Harvey P. Dale, Jul 14 2025 *)
-
PARI
a(n)=for(i=1,n!,if(issquarefree(n!+i),return(i)))
-
PARI
A092984(n) = { my(k=1); while(!issquarefree(n!+k), k++); k; }; \\ Antti Karttunen, Aug 22 2017
Formula
a(n) = A092983(n) - n!.
Extensions
More terms from Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Mar 29 2004
More terms from David Wasserman, Sep 27 2006
Typo in description corrected by Antti Karttunen, Aug 22 2017
Comments