cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A093118 Triangle T read by rows: T(m,n) = number of convex polyominoes with an m+1 X n+1 minimal bounding rectangle, m > 0, n <= m.

Original entry on oeis.org

5, 13, 68, 25, 222, 1110, 41, 555, 3951, 19010, 61, 1171, 11263, 70438, 329126, 85, 2198, 27468, 216618, 1245986, 5693968, 113, 3788, 59676, 579330, 4022546, 21832492, 98074332, 145, 6117, 118605, 1389927, 11462495, 72887139, 379145115, 1680306750
Offset: 1

Views

Author

Ralf Stephan, Mar 21 2004

Keywords

Examples

			Triangle begins:
   5,
  13,   68,
  25,  222,  1110,
  41,  555,  3951,  19010,
  61, 1171, 11263,  70438,  329126,
  85, 2198, 27468, 216618, 1245986, 5693968,
  ...
This is the lower half of an infinite square table that is symmetric at the main diagonal (T(m,n)=T(n,m)).
From _Günter Rote_, Feb 12 2019: (Start)
For m=2 and n=1, the T(2,1)=13 polyominoes in a 3 X 2 rectangle are the five polyominoes
.
  +---+---+---+       +---+       +---+---+
  |   |   |   |       |   |       |   |   |
  +---+---+---+   +---+---+---+   +---+---+---+
  |   |   |   |   |   |   |   |       |   |   |
  +---+---+---+   +---+---+---+       +---+---+
.
          +---+           +---+---+
          |   |           |   |   |
          +---+---+---+   +---+---+---+
          |   |   |   |   |   |   |   |
          +---+---+---+   +---+---+---+
.
  plus all their different horizontal and vertical reflections (1 + 2 + 2 + 4 + 4 = 13 polyominoes in total). (End)
		

Crossrefs

Columns T(m, 1) = A001844(m), T(m, 2) = A093119(m). Diagonal T(n, n) = A093120(n).
Sums of T(m,n) with fixed sum m+n (including entries with n > m and the trivial ones: T(0,x)=T(y,0)=1), are A005436. - Günter Rote, Feb 12 2019

Programs

  • Magma
    [[((n+k+n*k)*Binomial(2*n+2*k, 2*n) - 2*n*k*Binomial(n+k, n)^2)/(n+k): k in [1..n]]: n in [1..8]]; // G. C. Greubel, Feb 18 2019
  • Maple
    T:= (m, n)-> (m+n+m*n)/(m+n)*binomial(2*m+2*n, 2*m)
                 -2*m*n/(m+n)*binomial(m+n, m)^2:
    seq(lprint(seq(T(m, n), n=1..m)), m=1..10);  # Alois P. Heinz, Feb 24 2019
  • Mathematica
    T[m_, n_] := (m+n+m n)/(m+n) Binomial[2m + 2n, 2m] - 2 m n/(m+n) Binomial[ m+n, m]^2;
    Table[T[m, n], {m, 1, 8}, {n, 1, m}] // Flatten (* Jean-François Alcover, Aug 17 2018 *)
  • PARI
    {T(n,k) = ((n+k+n*k)*binomial(2*n+2*k, 2*n) - 2*n*k*binomial(n+k, n)^2)/(n+k)};
    for(n=1,8, for(k=1,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Feb 18 2019
    
  • Sage
    def T(m,n):
             w, h = m+1, n+1 # width and height
             p = w+h         # half the perimeter
             return ( binomial(2*p-4, 2*w-2) + binomial(2*p-6, 2*w-3)*(p-5/2) - 2*(p-3)*binomial(p-2, w-1)*binomial(p-4, w-2) )  # Günter Rote, Feb 13 2019
    

Formula

T(m,n) = ((m+n+m*n)*C(2*m+2*n, 2*m) - 2*m*n*C(m+n, m)^2)/(m+n), for m + n > 0.
T(m,n) = C(2*m+2*n,2*m) + ((2*m+2*n-1)/2)*C(2*m+2*n-2,2*m-1) - 2*(m+n-1) *C(m+n,m)*C(m+n-2,m-1), for m >= 0, n >= 0. - Günter Rote, Feb 12 2019