cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A093130 Third binomial transform of Fibonacci(3n).

Original entry on oeis.org

0, 2, 20, 160, 1200, 8800, 64000, 464000, 3360000, 24320000, 176000000, 1273600000, 9216000000, 66688000000, 482560000000, 3491840000000, 25267200000000, 182835200000000, 1323008000000000, 9573376000000000
Offset: 0

Views

Author

Paul Barry, Mar 23 2004

Keywords

Crossrefs

Programs

  • GAP
    a:=[0,2];; for n in [3..20] do a[n]:=10*a[n-1]-20*a[n-2]; od; a; # G. C. Greubel, Dec 27 2019
  • Magma
    I:=[0,2]; [n le 2 select I[n] else 10*Self(n-1) - 20*Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 27 2019
    
  • Maple
    seq(coeff(series(2*x/(1-10*x+20*x^2), x, n+1), x, n), n = 0..20); # G. C. Greubel, Dec 27 2019
  • Mathematica
    LinearRecurrence[{10,-20},{0,2},20] (* Harvey P. Dale, Jun 24 2015 *)
    Table[If[EvenQ[n], 2^n*5^(n/2)*Fibonacci[n], 2^n*5^((n-1)/2)*LucasL[n]], {n, 0, 20}] (* G. C. Greubel, Dec 27 2019 *)
  • PARI
    my(x='x+O('x^20)); concat([0], Vec(2*x/(1-10*x+20*x^2))) \\ G. C. Greubel, Dec 27 2019
    
  • Sage
    def A093130_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 2*x/(1-10*x+20*x^2) ).list()
    A093130_list(20) # G. C. Greubel, Dec 27 2019
    

Formula

G.f.: 2*x/(1-10*x+20*x^2).
a(n) = ((5+sqrt(5))^n - (5-sqrt(5))^n)/sqrt(5).
a(n) = 2^n*A093131(n).
a(0)=0, a(1)=2, a(n) = 10*a(n-1) - 20*a(n-2). - Harvey P. Dale, Jun 24 2015
a(2*n) = 2^(2*n)*5^n*Fibonacci(2*n), a(2*n+1) = 2^(2*n+1)*5^n*Lucas(2*n+1). - G. C. Greubel, Dec 27 2019