A093143 Expansion of (1-5*x)/(1-10*x).
1, 5, 50, 500, 5000, 50000, 500000, 5000000, 50000000, 500000000, 5000000000, 50000000000, 500000000000, 5000000000000, 50000000000000, 500000000000000, 5000000000000000, 50000000000000000, 500000000000000000, 5000000000000000000, 50000000000000000000, 500000000000000000000
Offset: 0
Examples
From _Adi Dani_, May 17 2011: (Start) a(2)=50: there are 50 compositions of even numbers into 2 parts <= 9: (0,0); (0,2),(2,0),(1,1); (0,4),(4,0),(1,3),(3,1),(2,2); (0,6),(6,0),(1,5),(5,1),(2,4),(4,2),(3,3); (0,8),(8,0),(1,7),(7,1),(2,6),(6,2),(3,5),(5,3),(4,4); (1,9),(9,1),(2,8),(8,2),(3,7),(7,3),(4,6),(6,4),(5,5); (3,9),(9,3),(4,8),(8,4),(5,7),(7,5),(6,6); (5,9),(9,5),(6,8),(8,6),(7,7); (7,9),(9,7),(8,8); (9,9). (End) Curious cubic identities (see a comment above): 1^3 + 5^3 + 3^3 = 153, 16^3 + 50^3 + 33^3 = 165033, 166^3 + 500^3 + 333^3 = 166500333, ... - _Wolfdieter Lang_, Feb 07 2017
Links
- Adi Dani, Restricted compositions of natural numbers
- Index entries for linear recurrences with constant coefficients, signature (10).
Programs
-
Mathematica
Table[Ceiling[1/2*10^n],{n,0,30}] (* Adi Dani, Jun 20 2011 *) Join[{1},NestList[10#&,5,20]] (* Harvey P. Dale, Apr 10 2021 *)
-
PARI
Vec((1-5*x)/(1-10*x) + O(x^100)) \\ Altug Alkan, Nov 01 2015
Formula
a(n) = 5*10^n/10 for n > 0.
a(n) = Sum_{k=0..n} A134309(n,k)*5^k = Sum_{k=0..n} A055372(n,k)*4^k. - Philippe Deléham, Feb 04 2012
From Elmo R. Oliveira, Aug 21 2024: (Start)
E.g.f.: (exp(10*x) + 1)/2.
a(n) = 10*a(n-1) for n > 1. (End)
Extensions
a(19)-a(21) from Elmo R. Oliveira, Aug 21 2024
Comments