cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A002277 a(n) = 3*(10^n - 1)/9.

Original entry on oeis.org

0, 3, 33, 333, 3333, 33333, 333333, 3333333, 33333333, 333333333, 3333333333, 33333333333, 333333333333, 3333333333333, 33333333333333, 333333333333333, 3333333333333333, 33333333333333333, 333333333333333333, 3333333333333333333, 33333333333333333333, 333333333333333333333
Offset: 0

Views

Author

Keywords

Comments

From Wolfdieter Lang, Feb 08 2017: (Start)
This sequence (for n >= 1) appears in n-families satisfying so-called curious cubic identities based on the Armstrong numbers 153, 370 and 371, A005188(10) - A005188(12).
153 also involves A246057(n-1) and A093143(n). See a comment in A246057 with the van Poorten et al. reference, and A281857.
370 and 371 also involve A067275(n+1). See the comment there, and A281858 and A281860. (End)

Examples

			From _Wolfdieter Lang_, Feb 08 2017: (Start)
Curious cubic identities (see a comment above):
1^3 + 5^3 + 3^3 = 153, 16^3 + 50^3 + 33^3 = 165033, 166^3 + 500^3 + 333^3 = 166500333, ...
3^3 + 7^3 + 0^3 = 370; 336700 = 33^3 + 67^3 + (00)^3 = 336700,  333^3 + 667^3 + (000)^3 = 333667000, ...
3^3 + 7^3 + 1^3 = 371, 33^3 + 67^3 + (01)^3 = 336701, 333^3 + 667^3 + (001)^3 = 333667001, ... (End)
		

Crossrefs

Programs

Formula

a(n) = 3*A002275(n).
a(n) = A178631(n)/A002283(n). - Reinhard Zumkeller, May 31 2010
From Vincenzo Librandi, Jul 22 2010: (Start)
a(n) = a(n-1) + 3*10^(n-1) with a(0)=0;
a(n) = 11*a(n-1) - 10*a(n-2) with a(0)=0, a(1)=3. (End)
G.f.: 3*x/((1 - x)*(1 - 10*x)). - Ilya Gutkovskiy, Feb 24 2017
Sum_{n>=1} 1/a(n) = A135702. - Amiram Eldar, Nov 13 2020
E.g.f.: exp(x)*(exp(9*x) - 1)/3. - Stefano Spezia, Sep 13 2023
From Elmo R. Oliveira, Jul 20 2025: (Start)
a(n) = (A246057(n) - 1)/5.
a(n) = A010785(A017197(n-1)) for n >= 1. (End)

A169964 Numbers whose decimal expansion contains only 0's and 5's.

Original entry on oeis.org

0, 5, 50, 55, 500, 505, 550, 555, 5000, 5005, 5050, 5055, 5500, 5505, 5550, 5555, 50000, 50005, 50050, 50055, 50500, 50505, 50550, 50555, 55000, 55005, 55050, 55055, 55500, 55505, 55550, 55555, 500000, 500005, 500050, 500055, 500500, 500505, 500550, 500555
Offset: 1

Views

Author

N. J. A. Sloane, Aug 07 2010

Keywords

Crossrefs

Programs

  • Haskell
    a169964 n = a169964_list !! (n-1)
    a169964_list = map (* 5) a007088_list
    -- Reinhard Zumkeller, Jan 10 2012
  • Mathematica
    Map[FromDigits,Tuples[{0,5},6]] (* Paolo Xausa, Oct 30 2023 *)
  • PARI
    print1(0);for(d=1,5,for(n=2^(d-1),2^d-1,print1(", ");forstep(i=d-1,0,-1,print1((n>>i)%2*5)))) \\ Charles R Greathouse IV, Nov 16 2011
    

Formula

a(n+1) = Sum_{k>=0} A030308(n,k)*A093143(k+1). - Philippe Deléham, Oct 16 2011
a(n) = 5 * A007088(n-1).

A055372 Invert transform of Pascal's triangle A007318.

Original entry on oeis.org

1, 1, 1, 2, 4, 2, 4, 12, 12, 4, 8, 32, 48, 32, 8, 16, 80, 160, 160, 80, 16, 32, 192, 480, 640, 480, 192, 32, 64, 448, 1344, 2240, 2240, 1344, 448, 64, 128, 1024, 3584, 7168, 8960, 7168, 3584, 1024, 128, 256, 2304, 9216, 21504, 32256, 32256, 21504, 9216, 2304, 256
Offset: 0

Views

Author

Christian G. Bower, May 16 2000

Keywords

Comments

Triangle T(n,k), 0 <= k <= n, read by rows, given by [1, 1, 0, 0, 0, 0, 0, 0, 0, ...] DELTA [1, 1, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Aug 10 2005
T(n,k) is the number of nonempty bit strings with n bits and exactly k 1's over all strings in the sequence. For example, T(2,1)=4 because we have {(01)},{(10)},{(0),(1)},{(1),(0)}. - Geoffrey Critzer, Apr 06 2013

Examples

			Triangle begins:
  1;
  1,  1;
  2,  4,  2;
  4, 12, 12,  4;
  8, 32, 48, 32,  8;
  ...
		

Crossrefs

Row sums give A081294. Cf. A000079, A007318, A055373, A055374.
Cf. A134309.
T(2n,n) gives A098402.

Programs

  • Mathematica
    nn=10;f[list_]:=Select[list,#>0&];a=(x+y x)/(1-(x+y x));Map[f,CoefficientList[Series[1/(1-a),{x,0,nn}],{x,y}]]//Grid  (* Geoffrey Critzer, Apr 06 2013 *)

Formula

a(n,k) = 2^(n-1)*C(n, k), for n>0.
G.f.: A(x, y)=(1-x-xy)/(1-2x-2xy).
As an infinite lower triangular matrix, equals A134309 * A007318. - Gary W. Adamson, Oct 19 2007
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A011782(n), A081294(n), A081341(n), A092811(n), A093143(n), A067419(n) for x = -1, 0, 1, 2, 3, 4, 5 respectively. - Philippe Deléham, Feb 05 2012

A134309 Triangle read by rows, where row n consists of n zeros followed by 2^(n-1).

Original entry on oeis.org

1, 0, 1, 0, 0, 2, 0, 0, 0, 4, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 16, 0, 0, 0, 0, 0, 0, 32, 0, 0, 0, 0, 0, 0, 0, 64, 0, 0, 0, 0, 0, 0, 0, 0, 128, 0, 0, 0, 0, 0, 0, 0, 0, 0, 256, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 512, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2048, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Gary W. Adamson, Oct 19 2007

Keywords

Comments

As infinite lower triangular matrices, binomial transform of A134309 = A082137. A134309 * A007318 = A055372. A134309 * [1,2,3,...] = A057711: (1, 2, 6, 16, 40, 96, 224,...).
Triangle read by rows given by [0,0,0,0,0,0,0,0,...] DELTA [1,1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Oct 20 2007

Examples

			Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins:
  1;
  0, 1;
  0, 0, 2;
  0, 0, 0, 4;
  0, 0, 0, 0, 8;
  0, 0, 0, 0, 0, 16;
  ...
		

Crossrefs

Cf. A011782 (diagonal elements: 1 followed by 1, 2, 4, 8, ... = A000079: 2^n).

Programs

  • Mathematica
    Join[{1},Flatten[Table[Join[{PadRight[{},n],2^(n-1)}],{n,20}]]] (* Harvey P. Dale, Jan 04 2024 *)
  • PARI
    A134309(r,c)=if(r==c,2^max(r-1,0),0) \\ M. F. Hasler, Mar 29 2022

Formula

Triangle, T(0,0) = 1, then for n > 0, n zeros followed by 2^(n-1). Infinite lower triangular matrix with (1, 1, 2, 4, 8, 16, ...) in the main diagonal and the rest zeros.
G.f.: (1 - y*x)/(1 - 2*y*x). - Philippe Deléham, Feb 04 2012
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A011782(n), A081294(n), A081341(n), A092811(n), A093143(n), A067419(n) for x = 0, 1, 2, 3, 4, 5, 6 respectively. - Philippe Deléham, Feb 04 2012
Diagonal is A011782, other elements are 0. - M. F. Hasler, Mar 29 2022

A246057 a(n) = (5*10^n - 2)/3.

Original entry on oeis.org

1, 16, 166, 1666, 16666, 166666, 1666666, 16666666, 166666666, 1666666666, 16666666666, 166666666666, 1666666666666, 16666666666666, 166666666666666, 1666666666666666, 16666666666666666, 166666666666666666, 1666666666666666666, 16666666666666666666, 166666666666666666666
Offset: 0

Views

Author

Vincenzo Librandi, Aug 13 2014

Keywords

Comments

a(k-1) = (10^k - 4)/6, together with b(k) = 3*a(k-1) + 2 = A093143(k) and c(k) = 2*a(k-1) + 1 = A002277(k) are k-digit numbers for k >= 1 satisfying the so-called curious cubic identity a(k-1)^3 + b(k)^3 + c(k)^3 = a(k)*10^(2*k) + b(k)*10^k + c(k) (concatenated a(k)b(k)c(k)). This k-family and the proof of the identity has been given in the introduction of the van der Poorten reference. Thanks go to S. Heinemeyer for bringing these identities to my attention. - Wolfdieter Lang, Feb 07 2017

Examples

			Curious cubic identities (see a comment and reference above): 1^3 + 5^3 + 3^3 = 153, 16^3 + 50^3 + 33^3 = 165033, 166^3 + 500^3 + 333^3 = 166500333, ... - _Wolfdieter Lang_, Feb 07 2017
		

Crossrefs

Cf. sequences with terms of the form 1k..k where the digit k is repeated n times: A000042 (k=1), A090843 (k=2), A097166 (k=3), A099914 (k=4), A099915 (k=5), this sequence (k=6), A246058 (k=7), A246059 (k=8), A067272 (k=9).

Programs

  • Magma
    [(5*10^n-2)/3: n in [0..20]];
    
  • Mathematica
    Table[(5 10^n - 2)/3, {n, 0, 20}]
  • PARI
    vector(50, n, (5*10^(n-1)-2)/3) \\ Derek Orr, Aug 13 2014

Formula

G.f.: (1 + 5*x)/((1 - x)*(1 - 10*x)).
a(n) = 11*a(n-1) - 10*a(n-2).
E.g.f.: exp(x)*(5*exp(9*x) - 2)/3. - Stefano Spezia, May 02 2025
a(n) = A323639(n+1)/2 = A086948(n+1)/12. - Elmo R. Oliveira, May 07 2025

A341383 Numbers m such that the largest digit in the decimal expansion of 1/m is 2.

Original entry on oeis.org

5, 45, 50, 450, 495, 500, 819, 825, 4500, 4545, 4950, 4995, 5000, 8190, 8250, 8325, 45000, 45045, 45450, 47619, 49500, 49950, 49995, 50000, 81819, 81900, 82500, 83250, 83325, 89109, 450000, 450045, 450450, 454500, 454545, 476190, 495000, 499500, 499950, 499995, 500000
Offset: 1

Views

Author

Bernard Schott, Feb 10 2021

Keywords

Comments

If m is a term, 10*m is also a term.
5 is the only prime up to 2.6*10^8 (comments in A333237).
Some subsequences: {45, 4545, 454545, ...}, {45045, 45045045, 45045045045, ...}, {45, 495, 4995, 49995, ...}, {819, 81819, 8181819, ...}, {825, 8325, 83325, 833325...}, ...
The subsequence of terms where 1/m has only digits {0,2} is m = 5*A333402 = 5, 45, 50, etc. A333402 is those t where 1/t has only digits {0,1}, so that 1/(5*t) = 2*(1/t)*(1/10) has digits {0,2}, starting from 1/5 = 0.2. These m are also A333402/2 of the even terms from A333402, since A333402 (like here) is self-similar in that the multiples of 10, divided by 10, are the sequence itself. - Kevin Ryde, Feb 13 2021

Examples

			As 1/45 = 0.0202020202..., 45 is a term.
As 1/825 = 0.0012121212121212...., 825 is a term.
As 1/47619 = 0.000021000021000021..., 47619 is a term.
As 1/4545045 = 0.000000220019824..., 4545045 is not a term.
		

Crossrefs

Cf. A333236.
Similar with largest digit k: A333402 (k=1), A333237 (k=9).
Subsequence: A093143 \ {1}.
Decimal expansion: A021499 (1/495), A021823 (1/819).

Programs

  • Mathematica
    Select[Range[10^5], Max[RealDigits[1/#][[1]]] == 2 &] (* Amiram Eldar, Feb 10 2021 *)
  • Python
    from itertools import count, islice
    from sympy import n_order, multiplicity
    def A341383_gen(startvalue=1): # generator of terms >= startvalue
        for m in count(max(startvalue,1)):
            m2, m5 = multiplicity(2,m), multiplicity(5,m)
            if max(str(10**(max(m2,m5)+n_order(10,m//2**m2//5**m5))//m)) == '2':
                yield m
    A341383_list = list(islice(A341383_gen(),10)) # Chai Wah Wu, Feb 07 2022

Extensions

Missing terms added by Amiram Eldar, Feb 10 2021

A037156 a(n) = 10^n*(10^n+1)/2.

Original entry on oeis.org

1, 55, 5050, 500500, 50005000, 5000050000, 500000500000, 50000005000000, 5000000050000000, 500000000500000000, 50000000005000000000, 5000000000050000000000, 500000000000500000000000, 50000000000005000000000000, 5000000000000050000000000000
Offset: 0

Views

Author

Keywords

Comments

Sum of first 10^n positive integers. - Omar E. Pol, May 03 2015

Examples

			From _Omar E. Pol_, May 03 2015: (Start)
For n = 0; a(0) = 1                       =    1 * 1   = 1
For n = 1; a(1) = 1 + 2 + ...... + 9 + 10 =   11 * 5   = 55
For n = 2; a(2) = 1 + 2 + .... + 99 + 100 =  101 * 50  = 5050
For n = 3; a(3) = 1 + 2 + .. + 999 + 1000 = 1001 * 500 = 500500
...
(End)
		

References

  • C. Pickover, Wonders of Numbers, Oxford University Press, NY, 2001, p. 328.

Crossrefs

A subsequence of the triangular numbers A000217.
Cf. A038544.

Programs

  • Mathematica
    LinearRecurrence[{110,-1000},{1,55},20] (* Harvey P. Dale, Oct 11 2023 *)

Formula

a(n) = A000533(n) * A093143(n). - Omar E. Pol, May 03 2015
From Chai Wah Wu, May 28 2016: (Start)
a(n) = 110*a(n-1) - 1000*a(n-2).
G.f.: (1 - 55*x)/((10*x - 1)*(100*x - 1)).
(End)
a(n) = sqrt(A038544(n)). - Bernard Schott, Jan 20 2022

Extensions

Corrected by T. D. Noe, Nov 07 2006

A352156 Numbers m such that the smallest digit in the decimal expansion of 1/m is 2, ignoring leading and trailing 0's.

Original entry on oeis.org

4, 5, 16, 36, 40, 44, 45, 50, 108, 160, 216, 252, 288, 292, 308, 360, 364, 375, 396, 400, 404, 440, 444, 450, 500, 1024, 1080, 1375, 1600, 2072, 2160, 2368, 2520, 2880, 2920, 3080, 3125, 3375, 3600, 3640, 3750, 3848, 3960, 4000, 4040, 4125, 4224, 4368, 4400, 4440, 4500, 5000
Offset: 1

Views

Author

Keywords

Comments

Leading 0's are not considered, otherwise every integer >= 11 would be a term (see examples).
Trailing 0's are also not considered, otherwise numbers of the form 2^i*5^j with i, j >= 0, apart from 1 (A003592) would be terms.
If k is a term, 10*k is also a term; so, terms with no trailing zeros are all primitive terms.

Examples

			m = 16 is a term since 1/16 = 0.0625 and the smallest term after the leading 0 is 2.
m = 216 is a term since 1/216 = 0.004629629629... and the smallest term after the leading 0's is 2.
m = 4444 is not a term since 1/4444 = 0.00022502250225... and the smallest term after the leading 0's is 0.
		

Crossrefs

Cf. A341383.
Subsequences: A093141 \ {1}, A093143 \ {1}.
Similar with smallest digit k: A352154 (k=0), A352155 (k=1), this sequence (k=2), A352157 (k=3), A352158 (k=4), A352159 (k=5), A352160 (k=6), A352153 (no known term for k=7), A352161 (k=8), no term (k=9).

Programs

  • Mathematica
    f[n_] := Union[ Flatten[ RealDigits[ 1/n][[1]] ]]; Select[ Range@ 1100, Min@ f@# == 2 &]
  • Python
    from itertools import count, islice
    from sympy import multiplicity, n_order
    def A352156_gen(startvalue=1): # generator of terms >= startvalue
        for n in count(max(startvalue,1)):
            m2, m5 = multiplicity(2,n), multiplicity(5,n)
            k, m = 10**max(m2,m5), 10**(t := n_order(10,n//2**m2//5**m5))-1
            c = k//n
            s = str(m*k//n-c*m).zfill(t)
            if s == '0' and min(str(c)) == '2':
                yield n
            elif '0' not in s and min(str(c).lstrip('0')+s) == '2':
                    yield n
    A352156_list = list(islice(A352156_gen(),20)) # Chai Wah Wu, Mar 28 2022

Formula

A352153(a(n)) = 2.

A216099 Period of powers of 3 mod 10^n.

Original entry on oeis.org

4, 20, 100, 500, 5000, 50000, 500000, 5000000, 50000000, 500000000, 5000000000, 50000000000, 500000000000, 5000000000000, 50000000000000, 500000000000000, 5000000000000000, 50000000000000000, 500000000000000000
Offset: 1

Views

Author

V. Raman, Sep 01 2012

Keywords

Crossrefs

Programs

  • Mathematica
    Table[If[n<5,(4*5^n)/5,10^n/20],{n,20}] (* or *) Join[{4,20,100},NestList[ 10#&,500,20]] (* Harvey P. Dale, May 31 2017 *)
  • PARI
    a(n)=if(n<5,4*5^n/5,10^n/20) \\ Charles R Greathouse IV, Mar 26 2016

Formula

a(n) = 4*5^(n-1) for n <= 4.
a(n) = 5*10^(n-2) for n >= 5.

A281857 Numbers occurring in a curious cubic identity.

Original entry on oeis.org

153, 165033, 166500333, 166650003333, 166665000033333, 166666500000333333, 166666650000003333333, 166666665000000033333333, 166666666500000000333333333, 166666666650000000003333333333, 166666666665000000000033333333333, 166666666666500000000000333333333333
Offset: 1

Views

Author

Wolfdieter Lang, Feb 07 2017

Keywords

Comments

See A246057 for the van der Poorten et al. reference and a comment.
153 is the Armstrong number A005188(10). [Typo corrected by Jeremy Tan, Feb 25 2023]

Examples

			1^3 + 5^3 + 3^3 = 153, 16^3 + 50^3 + 33^3 = 165033, 166^3 + 500^3 + 333^3 = 166500333, ...
		

Crossrefs

Programs

  • Mathematica
    Table[FromDigits@ Join[ReplacePart[ConstantArray[6, n], 1 -> 1], ReplacePart[ConstantArray[0, n], 1 -> 5], ConstantArray[3, n]], {n, 12}] (* Michael De Vlieger, Feb 08 2017 *)
  • PARI
    Vec(9*x*(17 - 550*x + 33500*x^2) / ((1 - x)*(1 - 10*x)*(1 - 100*x)*(1 - 1000*x)) + O(x^15)) \\ Colin Barker, Feb 08 2017
    
  • PARI
    a(n) = (((10^n - 4)/6)^3) + ((10^n/2)^3) + (((10^n - 1)/3)^3) \\ Jean-Jacques Vaudroz, Aug 11 2024

Formula

a(n) = A246057(n-1)^3 + A093143(n)^3 + A002277(n)^3, n >= 1.
From Colin Barker, Feb 08 2017: (Start)
G.f.: 9*x*(17 - 550*x + 33500*x^2) / ((1 - x)*(1 - 10*x)*(1 - 100*x)*(1 - 1000*x)).
a(n) = (-2 + 2^(1+n)*5^n - 100^n + 1000^n) / 6.
a(n) = 1111*a(n-1) - 112110*a(n-2) + 1111000*a(n-3) - 1000000*a(n-4) for n>4. (End)
Showing 1-10 of 18 results. Next