cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A002277 a(n) = 3*(10^n - 1)/9.

Original entry on oeis.org

0, 3, 33, 333, 3333, 33333, 333333, 3333333, 33333333, 333333333, 3333333333, 33333333333, 333333333333, 3333333333333, 33333333333333, 333333333333333, 3333333333333333, 33333333333333333, 333333333333333333, 3333333333333333333, 33333333333333333333, 333333333333333333333
Offset: 0

Views

Author

Keywords

Comments

From Wolfdieter Lang, Feb 08 2017: (Start)
This sequence (for n >= 1) appears in n-families satisfying so-called curious cubic identities based on the Armstrong numbers 153, 370 and 371, A005188(10) - A005188(12).
153 also involves A246057(n-1) and A093143(n). See a comment in A246057 with the van Poorten et al. reference, and A281857.
370 and 371 also involve A067275(n+1). See the comment there, and A281858 and A281860. (End)

Examples

			From _Wolfdieter Lang_, Feb 08 2017: (Start)
Curious cubic identities (see a comment above):
1^3 + 5^3 + 3^3 = 153, 16^3 + 50^3 + 33^3 = 165033, 166^3 + 500^3 + 333^3 = 166500333, ...
3^3 + 7^3 + 0^3 = 370; 336700 = 33^3 + 67^3 + (00)^3 = 336700,  333^3 + 667^3 + (000)^3 = 333667000, ...
3^3 + 7^3 + 1^3 = 371, 33^3 + 67^3 + (01)^3 = 336701, 333^3 + 667^3 + (001)^3 = 333667001, ... (End)
		

Crossrefs

Programs

Formula

a(n) = 3*A002275(n).
a(n) = A178631(n)/A002283(n). - Reinhard Zumkeller, May 31 2010
From Vincenzo Librandi, Jul 22 2010: (Start)
a(n) = a(n-1) + 3*10^(n-1) with a(0)=0;
a(n) = 11*a(n-1) - 10*a(n-2) with a(0)=0, a(1)=3. (End)
G.f.: 3*x/((1 - x)*(1 - 10*x)). - Ilya Gutkovskiy, Feb 24 2017
Sum_{n>=1} 1/a(n) = A135702. - Amiram Eldar, Nov 13 2020
E.g.f.: exp(x)*(exp(9*x) - 1)/3. - Stefano Spezia, Sep 13 2023
From Elmo R. Oliveira, Jul 20 2025: (Start)
a(n) = (A246057(n) - 1)/5.
a(n) = A010785(A017197(n-1)) for n >= 1. (End)

A093137 Expansion of (1-7*x)/((1-x)*(1-10*x)).

Original entry on oeis.org

1, 4, 34, 334, 3334, 33334, 333334, 3333334, 33333334, 333333334, 3333333334, 33333333334, 333333333334, 3333333333334, 33333333333334, 333333333333334, 3333333333333334, 33333333333333334, 333333333333333334, 3333333333333333334, 33333333333333333334
Offset: 0

Views

Author

Paul Barry, Mar 24 2004

Keywords

Comments

Second binomial transform of 3*A001045(3n)/3+(-1)^n. Partial sums of A093138. A convex combination of 10^n and 1. In general the second binomial transform of k*Jacobsthal(3n)/3+(-1)^n is 1,1+k,1+11k,1+111k,... This is the case for k=3.
a(n) is the number of n-length sequences of decimal digits whose sum is divisible by 3. - Geoffrey Critzer, Jan 18 2014
This sequence appears in a family of curious cubic identities based on the Armstrong number 407 = A005188(13). See the formula section. For the analog identities based on 153 = A005188(10) see a comment on A246057 with the van der Poorten et al. reference and A281857. For those based on 370 = A005188(11) see A067275, A002277 and A281858. - Wolfdieter Lang, Feb 08 2017

Examples

			a(1)^2 = 16
a(2)^2 = 1156
a(3)^2 = 111556
a(4)^2 = 11115556
a(5)^2 = 1111155556
a(6)^2 = 111111555556
a(7)^2 = 11111115555556
a(8)^2 = 1111111155555556
a(9)^2 = 111111111555555556, etc... (see A102807). - _Philippe Deléham_, Oct 03 2011
Curious cubic identities: 407 = 4^3 + 0^3 + 7^3, 340067 = 34^3 + (00)^3 + 67^3, 334000677 = 334^3 + (000)^3 + 677^3, ... - _Wolfdieter Lang_, Feb 08 2017
		

References

  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See entry 3334 at p. 168.

Crossrefs

Programs

  • Mathematica
    nn=20; r=Solve[{s==4x s+3 x a+3x b+1,a==4x a+3x s+3x b,b==4x b+3x s+3x a},{s,a,b}]; CoefficientList[Series[s/.r,{x,0,nn}],x] (* Geoffrey Critzer, Jan 18 2014 *)
    Table[3*10^n/9 + 6/9, {n, 0, 20}] (* or *) NestList[10 # - 6 &, 1, 20] (* Michael De Vlieger, Feb 08 2017 *)
    LinearRecurrence[{11,-10},{1,4},20] (* Harvey P. Dale, Oct 07 2017 *)
  • PARI
    Vec((1-7*x)/((1-x)*(1-10*x)) + O (x^30)) \\ Michel Marcus, Feb 09 2017

Formula

a(n) = 3*10^n/9 + 6/9.
a(n) = 10*a(n-1)-6 with a(0)=1. - Vincenzo Librandi, Aug 02 2010
a(n)^3 + 0(n)^3 + A067275(n+1)^3 = concatenation(a(n), 0(n), A067275(n+1)) = A281859(n), where 0(n) denotes n 0's, n >= 1. - Wolfdieter Lang, Feb 08 2017
From Elmo R. Oliveira, Aug 17 2024: (Start)
E.g.f.: exp(x)*(exp(9*x) + 2)/3.
a(n) = 11*a(n-1) - 10*a(n-2) for n > 1. (End)

A281858 Curious cubic identities based on the Armstrong number 370.

Original entry on oeis.org

370, 336700, 333667000, 333366670000, 333336666700000, 333333666667000000, 333333366666670000000, 333333336666666700000000, 333333333666666667000000000, 333333333366666666670000000000, 333333333336666666666700000000000, 333333333333666666666667000000000000
Offset: 1

Views

Author

Wolfdieter Lang, Feb 08 2017

Keywords

Comments

See a comment in A067275, and the analog to the Armstrong number 153 = A005188(10) treated in A281857, 370 = A005188(11).

Examples

			n=1: 370 =  3^3 + 7^3 + 0^3; n=2: 336700 = 33^3 + 67^3 + (00)^3; n=3: 333667000 = 333^3 + 667^3 + (000)^3.
		

Crossrefs

Programs

  • Mathematica
    Table[FromDigits@ Join[ConstantArray[3, n], ReplacePart[ConstantArray[6, n], -1 -> 7], ConstantArray[0, n]], {n, 12}] (* Michael De Vlieger, Feb 08 2017 *)
  • PARI
    Vec(10*x*(37 - 7400*x + 100000*x^2) / ((1 - 10*x)*(1 - 100*x)*(1 - 1000*x)) + O(x^30)) \\ Colin Barker, Feb 08 2017

Formula

a(n) = A002277(n)^3 + A067275(n+1)^3 + 0(n)^3, n >= 1, with 0(n) standing for n 0's.
From Colin Barker, Feb 08 2017: (Start)
G.f.: 10*x*(37 - 7400*x + 100000*x^2) / ((1 - 10*x)*(1 - 100*x)*(1 - 1000*x)).
a(n) = 10^n*(1 + 10^n + 100^n) / 3.
a(n) = 1110*a(n-1) - 111000*a(n-2) + 1000000*a(n-3) for n>3. (End)

A281860 Curious identities based on the Armstrong number 371 = A005188(12).

Original entry on oeis.org

371, 336701, 333667001, 333366670001, 333336666700001, 333333666667000001, 333333366666670000001, 333333336666666700000001, 333333333666666667000000001, 333333333366666666670000000001, 333333333336666666666700000000001, 333333333333666666666667000000000001
Offset: 1

Views

Author

Wolfdieter Lang, Feb 08 2017

Keywords

Comments

See a comment in A067275.

Examples

			n=1: 371 = 3^3 + 7^3 + 1^3;
n=2: 336701 = 33^3 + 67^3 + (01)^3;
n=3: 333667001 = 333^3 + 667^3 + (001)^3.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1111,-112110,1111000,-1000000},{371,336701,333667001,333366670001},20] (* Harvey P. Dale, May 28 2024 *)
  • PARI
    Vec(x*(371 - 75480*x + 1185000*x^2 - 2000000*x^3) / ((1 - x)*(1 - 10*x)*(1 - 100*x)*(1 - 1000*x)) + O(x^30)) \\ Colin Barker, Feb 09 2017

Formula

a(n) = A002277(n) * 10^(2*n) + A067275(n+1) * 10^n + 0(n-1)1, where 0(n-1)1 stands for n-1 0's followed by a 1, for n >= 1.
a(n) = A002277(n)^3 + A067275(n+1)^3 + (0(n-1)1)^3.
From Colin Barker, Feb 09 2017: (Start)
G.f.: x*(371 - 75480*x + 1185000*x^2 - 2000000*x^3)/((1 - x)*(1 - 10*x)*(1 - 100*x)*(1 - 1000*x)).
a(n) = 1111*a(n-1) - 112110*a(n-2) + 1111000*a(n-3) - 1000000*a(n-4) for n>4.
a(n) = (3 + 10^n + 100^n + 1000^n)/3. (End)
Showing 1-4 of 4 results.