cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A098210 a(n) = -1 + A093137(n)^2.

Original entry on oeis.org

0, 15, 1155, 111555, 11115555, 1111155555, 111111555555, 11111115555555, 1111111155555555, 111111111555555555, 11111111115555555555, 1111111111155555555555, 111111111111555555555555
Offset: 0

Views

Author

Labos Elemer, Oct 20 2004

Keywords

Examples

			Like other -1 + square of near-repdigits give special digit patterns: (33333334^2) - 1 = 11111115555555.
		

Crossrefs

Cf. A093137.

Programs

  • Magma
    [(1/9)*(10^n-1)*(5+10^n): n in [0..15]]; // Vincenzo Librandi, Jun 02 2013
  • Mathematica
    Table[(1/9) (10^n - 1) (5 + 10^n), {n, 0, 25}] (* Vincenzo Librandi, Jun 02 2013 *)

Formula

a(n) = (1/9)*(10^n-1)*(5+10^n). - Vincenzo Librandi, Jun 02 2013

A067275 Number of Fibonacci numbers A000045(k), k <= 10^n, which end in 4.

Original entry on oeis.org

0, 1, 7, 67, 667, 6667, 66667, 666667, 6666667, 66666667, 666666667, 6666666667, 66666666667, 666666666667, 6666666666667, 66666666666667, 666666666666667, 6666666666666667, 66666666666666667, 666666666666666667, 6666666666666666667, 66666666666666666667, 666666666666666666667
Offset: 0

Views

Author

Joseph L. Pe, Feb 21 2002

Keywords

Comments

Numbers n such that the digits of A000326(n), the n-th pentagonal number, begin with n. [original definition of this sequence]
The sequence 1,7,67.... has a(n) = 6*10^n/9+3/9. It is the second binomial transform of 6*A001045(3n)/3 + (-1)^n. In general the second binomial transform of k*Jacobsthal(3n)/3+(-1)^n is k*10^n/9 + (1-k/9) = 1, 1+k, 1+11k, 1+111k, ... - Paul Barry, Mar 24 2004
Except for the first two terms, these are the 3-automorphic numbers ending in 7. - Eric M. Schmidt, Aug 28 2012
From Wolfdieter Lang, Feb 08 2017: (Start)
This sequence appears in curious identities based on the Armstrong numbers 370 = A005188(11), 371 = A005188(12) and 407 = A005188(13).
For such identities based on 153 = A005188(10) see a comment in A246057 with the van der Poorten et al. reference.
For 370 these identities are A002277(n)^3 + a(n+1)^3 + 0(n)^3 = A002277(n)*10^(2*n) + a(n+1)*10^n + 0(n) = A281858(n), where 0(n) means n 0's.
For 371 these identities are A002277(n)^3 + a(n+1)^3 + (0(n-1)1)^3 = A002277(n)*10^(2*n) + a(n+1)*10^n + 0(n-1)1 = A281860(n), where 0(n-1)1 means n-1 0's followed by a 1.
For 407 these identities are A093137(n)^3 + 0(n)^3 + a(n+1)^3 = concatenation(A093137(n), 0(n), a(n+1)) = A281859(n). (End)

Examples

			a(2) = 7 because 7 of the first 10^2 Fibonacci numbers end in 4.
From _Wolfdieter Lang_, Feb 08 2017: (Start)
Curious cubic identities:
3^3 + 7^3 + 0^3 = 370, 33^3 + 67^3 + (00)^3 = 336700, 333^3 + 667^3 + (000)^3 = 333667000, ...
3^3 + 7^3 + 1^3 = 371, 33^3 + 67^3 + (01)^3 = 336701, 333^3 + 667^3 + (001)^3 = 333667001, ...
4^3 + 0^3 + 7^3 = 407, 34^3 + (00)^3 + 67^3 = 340067 , 334^3 + (000)^3 + 677^3 = 334000677, ... (End)
		

Crossrefs

Programs

  • Mathematica
    s = Fibonacci@ Range[10^5]; Table[Count[Take[s, 10^n], m_ /; Mod[m, 10] == 4], {n, 0, Floor@ Log10@ Length@ s}] (* or *) Table[Boole[n > 0] Ceiling[10^n/15], {n, 0, 20}] (* or *) CoefficientList[Series[x (1 - 4 x)/((1 - x) (1 - 10 x)), {x, 0, 20}], x] (* Michael De Vlieger, Feb 08 2017 *)
  • PARI
    a(n)=(10^n+13)\15 \\ Charles R Greathouse IV, Jun 05 2011

Formula

a(n) = ceiling((2/30)*10^n) - Benoit Cloitre, Aug 27 2002
From Paul Barry, Mar 24 2004: (Start)
G.f.: x*(1 - 4*x)/((1 - x)*(1 - 10*x)).
a(n) = 10^n/15 + 1/3 for n>0. (End)
a(n) = 10*a(n-1) - 3 for n>1. - Vincenzo Librandi, Dec 07 2010 [Immediate consequence of the previous formula, R. J. Mathar]
From Eric M. Schmidt, Oct 28 2012: (Start)
For n>0, a(n) = A199682(n-1)/3 = (2*10^(n-1) + 1)/3.
For n>=2, a(n+1) = a(n) + 6*10^n. (End)
From Elmo R. Oliveira, Jul 22 2025: (Start)
E.g.f.: (-6 + 5*exp(x) + exp(10*x))/15.
a(n) = 11*a(n-1) - 10*a(n-2) for n >= 3.
a(n) = A073553(n)/2 for n >= 1. (End)

Extensions

A073552 merged into this sequence by Eric M. Schmidt, Oct 28 2012

A102807 a(n) is the square of one plus the number consisting of n 3's.

Original entry on oeis.org

1, 16, 1156, 111556, 11115556, 1111155556, 111111555556, 11111115555556, 1111111155555556, 111111111555555556, 11111111115555555556, 1111111111155555555556, 111111111111555555555556, 11111111111115555555555556, 1111111111111155555555555556, 111111111111111555555555555556
Offset: 0

Views

Author

Ron Knott, Feb 27 2005

Keywords

Comments

Old name was: The number (333...334)^2.
An infinite sequence of squares with no zeros in base 10.
a(n) = A104265(2n) for n > 0. - Chai Wah Wu, Mar 24 2020

References

  • Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See Table 31 at p. 61.
  • Italo Ghersi, Matematica dilettevole e curiosa, pp. 111-112, Hoepli, Milano, 1967. [Vincenzo Librandi, Dec 31 2008]

Crossrefs

Programs

  • Maple
    a:= n-> (1+parse(cat(0, 3$n)))^2:
    seq(a(n), n=0..20);  # Alois P. Heinz, Sep 03 2018
  • Mathematica
    Table[(10^n + 2)^2/9, {n, 0, 20}] (* Paolo Xausa, Jun 26 2024 *)

Formula

From R. J. Mathar, Jan 06 2009: (Start)
a(n) = (100^n + 4*10^n + 4)/9.
G.f.: (1 - 95*x + 490*x^2)/((1-x)*(100*x-1)*(10*x-1)). (End)
E.g.f.: exp(x)*(4 + 4*exp(9*x) + exp(99*x))/9. - Stefano Spezia, Jul 31 2024

Extensions

New name from Alois P. Heinz, Sep 03 2018

A237424 Numbers of the form (10^a + 10^b + 1)/3.

Original entry on oeis.org

1, 4, 7, 34, 37, 67, 334, 337, 367, 667, 3334, 3337, 3367, 3667, 6667, 33334, 33337, 33367, 33667, 36667, 66667, 333334, 333337, 333367, 333667, 336667, 366667, 666667, 3333334, 3333337, 3333367, 3333667, 3336667
Offset: 1

Views

Author

Ahmad J. Masad, Feb 07 2014

Keywords

Comments

Has the property that the product of any two (not necessarily distinct) terms has digits in nondecreasing order.
Conjecture: This sequence is in a sense the maximally dense sequence with this nondecreasing products property. That is, it appears that every maximal sequence is either (i) A237424, (ii) a finite set of "extra" terms plus A237424 restricted to b=0 (which is A093137), or (iii) a finite set of "extra" terms plus A237424 restricted to a=b (which is A067275). (There might be one more case, not yet identified.) - David Applegate, Feb 12 2014
See A254143 and link for products a(i)*a(j) in natural order. - Reinhard Zumkeller, Jan 28 2015

Crossrefs

Programs

  • Haskell
    a237424 = flip div 3 . (+ 1) . a052216
    -- Reinhard Zumkeller, Jan 28 2015
    
  • Magma
    A052216:=[10^(n-1) + 10^(k-1): k in [1..n], n in [1..100]];
    A237424:= func< n | (A052216[n]+1)/3 >;
    [A237424(n): n in [1..100]]; // G. C. Greubel, Feb 22 2024
    
  • Mathematica
    Union@ Flatten@ Table[(10^a + 10^b + 1)/3, {a, 0, 8}, {b, a, 8}] (* Robert G. Wilson v, Jan 26 2015 *)
    (10^#[[1]]+10^#[[2]]+1)/3&/@Tuples[Range[0,8],2]//Union (* Harvey P. Dale, May 28 2019 *)
  • PARI
    list(lim)=my(v=List(),a,t); while(1, for(b=0,a, t=(10^a+10^b+1)/3; if(t>lim, return(Set(v))); listput(v, t)); a++) \\ Charles R Greathouse IV, May 13 2015
    
  • Python
    from math import isqrt
    def A237424(n): return (10**(a:=(k:=isqrt(m:=n<<1))+(m>k*(k+1))-1)+10**(n-1-(a*(a+1)>>1))+1)//3 # Chai Wah Wu, Apr 08 2025
  • SageMath
    A052216=flatten([[10^(n-1) + 10^(k-1) for k in range(1,n+1)] for n in range(1,101)])
    def A237424(n): return (A052216[n-1]+1)//3
    [A237424(n) for n in range(1,101)] # G. C. Greubel, Feb 22 2024
    

Formula

a(n) = (A052216(n) + 1)/3. - Reinhard Zumkeller, Jan 28 2015

Extensions

Edited by David Applegate, Feb 07 2014

A093138 Expansion of (1-7x)/(1-10x).

Original entry on oeis.org

1, 3, 30, 300, 3000, 30000, 300000, 3000000, 30000000, 300000000, 3000000000, 30000000000, 300000000000, 3000000000000, 30000000000000, 300000000000000, 3000000000000000, 30000000000000000, 300000000000000000, 3000000000000000000, 30000000000000000000, 300000000000000000000
Offset: 0

Views

Author

Paul Barry, Mar 24 2004

Keywords

Comments

Partial sums are A093137. A convex combination of 10^n and 0^n.

Crossrefs

Cf. A093137.

Programs

  • PARI
    Vec((1-7*x)/(1-10*x) + O(x^30)) \\ Michel Marcus, Sep 07 2015

Formula

a(n) = 3*10^n/10 + 7*0^n/10.
a(n) = 3*10^(n-1) with a(0)=1. - Vincenzo Librandi, Aug 02 2010
E.g.f.: (3*exp(10*x) + 7)/10. - Elmo R. Oliveira, Aug 13 2024

A254338 Initial digits of A254143 in decimal representation.

Original entry on oeis.org

1, 4, 7, 1, 2, 3, 3, 4, 6, 1, 1, 2, 2, 2, 3, 3, 3, 4, 6, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 27 2015

Keywords

Comments

a(n) = A000030(A254143(n));
also initial digits of A254323: a(n) = A000030(A254323(n)).
all terms are of the form u*v mod 10, where u <= v and belonging to {1,3,4,6,7}, the distinct elements of A254397:
length of k-th run of consecutive 1s = A005993(k-2), k > 1;
length of k-th run of consecutive 2s = k*(k+1)/2 = A000217(k), k >= 1;
length of k-th run of consecutive 3s = k+1, k >= 1;
length of k-th run of consecutive 4s = A065033(k-1);
n with a(n) = 4: A237424(n) = (10^a+10^b+1)/3 with b = 0, see also A093137, A133384;
n with a(n) = 6: A237424(n) = (10^a+10^b+1)/3 with a = b; A005994(a(n)) = 6 for n > 1; see also A199682;

Crossrefs

Programs

  • Haskell
    a254338 = a000030 . a254143
    
  • PARI
    listA237424(lim)=my(v=List(),a,t); while(1, for(b=0,a, t=(10^a+10^b+1)/3; if(t>lim, return(Set(v))); listput(v, t)); a++)
    do(lim)=my(v=List(),u=listA237424(lim),t); for(i=1,#u, for(j=1,i, t=u[i]*u[j]; if(t>lim,break); listput(v,t))); apply(n->digits(n)[1], Set(v)) \\ Charles R Greathouse IV, May 13 2015

A325907 a(n) = ( (-1)^n * Sum_{k=0..n-2} (-1)^k*10^(2^k) + 10^(2^(n-1)) - ((-1)^n+3)/2 )/3.

Original entry on oeis.org

3, 36, 3363, 33336636, 3333333366663363, 33333333333333336666666633336636, 3333333333333333333333333333333366666666666666663333333366663363
Offset: 1

Views

Author

Seiichi Manyama, Sep 08 2019

Keywords

Comments

All terms are elements of A213517.

Examples

			              36 =        -3 - 1 +        4 * 10^1.
            3363 =       -36 - 1 +       34 * 10^2.
        33336636 =     -3363 - 1 +     3334 * 10^4.
3333333366663363 = -33336636 - 1 + 33333334 * 10^8.
------------------------------------------------------
T(n) = n*(n+1)/2.
               T(3) =                               6.
              T(36) =                             666.
            T(3363) =                         5656566.
        T(33336636) =                 555665666566566.
T(3333333366663363) = 5555555666655656666556566566566.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := ((-1)^n * Sum[(-1)^k * 10^(2^k), {k, 0, n - 2}] + 10^(2^(n - 1)) - ((-1)^n + 3)/2)/3; Array[a, 7] (* Amiram Eldar, May 07 2021 *)
  • PARI
    {a(n) = ((-1)^n*sum(k=0, n-2, (-1)^k*10^2^k)+10^2^(n-1)-((-1)^n+3)/2)/3}

Formula

a(n) = 3 * A325906(n).
a(n) = -a(n-1) - 1 + A093137(2^(n-2)) * 10^(2^(n-2)).

A281859 Curious identities based on the Armstrong number 407 = A005188(13).

Original entry on oeis.org

407, 340067, 334000667, 333400006667, 333340000066667, 333334000000666667, 333333400000006666667, 333333340000000066666667, 333333334000000000666666667, 333333333400000000006666666667, 333333333340000000000066666666667, 333333333334000000000000666666666667
Offset: 1

Views

Author

Wolfdieter Lang, Feb 08 2017

Keywords

Comments

See a comment in A093137.

Examples

			Curious cubic identities: 407 = 4^3 + 0^3 + 7^3, 340067 = 34^3 + (00)^3 + 67^3, 334000677 = 334^3 + (000)^3 + 677^3, ...
		

Programs

  • Mathematica
    Table[FromDigits@ Join[ReplacePart[ConstantArray[3, n], -1 -> 4], ConstantArray[0, n], ReplacePart[ConstantArray[6, n], -1 -> 7]], {n, 12}] (* Michael De Vlieger, Feb 08 2017 *)
    LinearRecurrence[{1111,-112110,1111000,-1000000},{407,340067,334000667,333400006667},20] (* Harvey P. Dale, May 10 2018 *)
  • PARI
    Vec(x*(407 - 112110*x + 1815000*x^2 - 2000000*x^3) / ((1 - x)*(1 - 10*x)*(1 - 100*x)*(1 - 1000*x)) + O(x^30)) \\ Colin Barker, Feb 08 2017

Formula

From Colin Barker, Feb 08 2017: (Start)
G.f.: x*(407 - 112110*x + 1815000*x^2 - 2000000*x^3) / ((1 - x)*(1 - 10*x)*(1 - 100*x)*(1 - 1000*x)).
a(n) = (1 + 2^(1+n)*5^n + 2^(1+2*n)*25^n + 1000^n) / 3.
a(n) = 1111*a(n-1) - 112110*a(n-2) + 1111000*a(n-3) - 1000000*a(n-4) for n>4. (End)

A034978 a(n)^2 is smallest square starting with a string of n 1's.

Original entry on oeis.org

1, 34, 334, 3334, 10541, 333334, 3333334, 33333334, 333333334, 3333333334, 10540925534, 105409255339, 3333333333334, 10540925533895, 105409255338946, 105409255338946, 10540925533894598, 105409255338945978, 3333333333333333334, 33333333333333333334, 333333333333333333334, 1054092553389459777333
Offset: 1

Views

Author

Patrick De Geest, Nov 15 1998

Keywords

Examples

			a(5)^2 = 10541^2 = {11111}2681.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local x, k, s;
      x:= (10^n-1)/9;
      for k from 0 do
        s:= ceil(sqrt(10^k*x));
        if s^2 < (x+1)*10^k then return s fi
      od
    end proc:
    map(f, [$1..20]); # Robert Israel, May 31 2023

Formula

a(n) <= A093137(n). - Robert Israel, May 31 2023

Extensions

More terms from Francisco Salinas (franciscodesalinas(AT)hotmail.com), Dec 23 2001

A073555 Number of Fibonacci numbers F(k), k <= 10^n, which end in 8.

Original entry on oeis.org

1, 8, 68, 668, 6668, 66668, 666668, 6666668, 66666668, 666666668, 6666666668, 66666666668, 666666666668, 6666666666668, 66666666666668, 666666666666668, 6666666666666668, 66666666666666668, 666666666666666668, 6666666666666666668, 66666666666666666668, 666666666666666666668, 6666666666666666666668, 66666666666666666666668
Offset: 1

Views

Author

Shyam Sunder Gupta, Aug 15 2002

Keywords

Examples

			a(2) = 8 because there are 8 Fibonacci numbers up to 10^2 which end in 8.
		

Crossrefs

Formula

If n>1 then a(n) = (10^n + 20)/15. - Robert Gerbicz, Sep 06 2002
From Elmo R. Oliveira, Jul 22 2025: (Start)
G.f.: x*(1 - 3*x - 10*x^2)/((1-x)*(1-10*x)).
E.g.f.: (-21 - 15*x + 20*exp(x) + exp(10*x))/15.
a(n) = 2*A093137(n-1) for n >= 2.
a(n) = 11*a(n-1) - 10*a(n-2) for n > 3. (End)

Extensions

More terms from Robert Gerbicz, Sep 06 2002
Showing 1-10 of 17 results. Next