cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A073552 Duplicate of A067275.

Original entry on oeis.org

0, 1, 7, 67, 667, 6667, 66667, 666667, 6666667, 66666667, 666666667, 6666666667, 66666666667, 666666666667, 6666666666667, 66666666666667, 666666666666667, 6666666666666667, 66666666666666667, 666666666666666667
Offset: 0

Views

Author

Keywords

A098209 a(n) = A067275(n+1)^2 - 1.

Original entry on oeis.org

0, 48, 4488, 444888, 44448888, 4444488888, 444444888888, 44444448888888, 4444444488888888, 444444444888888888, 44444444448888888888, 4444444444488888888888, 444444444444888888888888
Offset: 0

Views

Author

Labos Elemer, Oct 20 2004

Keywords

Comments

Certain functions of near or generalized repdigits provide interesting digit patterns like e.g: -1+(666666667)^2=444444444888888888.

Crossrefs

Extensions

Definition corrected by Georg Fischer, Jun 27 2020

A002277 a(n) = 3*(10^n - 1)/9.

Original entry on oeis.org

0, 3, 33, 333, 3333, 33333, 333333, 3333333, 33333333, 333333333, 3333333333, 33333333333, 333333333333, 3333333333333, 33333333333333, 333333333333333, 3333333333333333, 33333333333333333, 333333333333333333, 3333333333333333333, 33333333333333333333, 333333333333333333333
Offset: 0

Views

Author

Keywords

Comments

From Wolfdieter Lang, Feb 08 2017: (Start)
This sequence (for n >= 1) appears in n-families satisfying so-called curious cubic identities based on the Armstrong numbers 153, 370 and 371, A005188(10) - A005188(12).
153 also involves A246057(n-1) and A093143(n). See a comment in A246057 with the van Poorten et al. reference, and A281857.
370 and 371 also involve A067275(n+1). See the comment there, and A281858 and A281860. (End)

Examples

			From _Wolfdieter Lang_, Feb 08 2017: (Start)
Curious cubic identities (see a comment above):
1^3 + 5^3 + 3^3 = 153, 16^3 + 50^3 + 33^3 = 165033, 166^3 + 500^3 + 333^3 = 166500333, ...
3^3 + 7^3 + 0^3 = 370; 336700 = 33^3 + 67^3 + (00)^3 = 336700,  333^3 + 667^3 + (000)^3 = 333667000, ...
3^3 + 7^3 + 1^3 = 371, 33^3 + 67^3 + (01)^3 = 336701, 333^3 + 667^3 + (001)^3 = 333667001, ... (End)
		

Crossrefs

Programs

Formula

a(n) = 3*A002275(n).
a(n) = A178631(n)/A002283(n). - Reinhard Zumkeller, May 31 2010
From Vincenzo Librandi, Jul 22 2010: (Start)
a(n) = a(n-1) + 3*10^(n-1) with a(0)=0;
a(n) = 11*a(n-1) - 10*a(n-2) with a(0)=0, a(1)=3. (End)
G.f.: 3*x/((1 - x)*(1 - 10*x)). - Ilya Gutkovskiy, Feb 24 2017
Sum_{n>=1} 1/a(n) = A135702. - Amiram Eldar, Nov 13 2020
E.g.f.: exp(x)*(exp(9*x) - 1)/3. - Stefano Spezia, Sep 13 2023
From Elmo R. Oliveira, Jul 20 2025: (Start)
a(n) = (A246057(n) - 1)/5.
a(n) = A010785(A017197(n-1)) for n >= 1. (End)

A093137 Expansion of (1-7*x)/((1-x)*(1-10*x)).

Original entry on oeis.org

1, 4, 34, 334, 3334, 33334, 333334, 3333334, 33333334, 333333334, 3333333334, 33333333334, 333333333334, 3333333333334, 33333333333334, 333333333333334, 3333333333333334, 33333333333333334, 333333333333333334, 3333333333333333334, 33333333333333333334
Offset: 0

Views

Author

Paul Barry, Mar 24 2004

Keywords

Comments

Second binomial transform of 3*A001045(3n)/3+(-1)^n. Partial sums of A093138. A convex combination of 10^n and 1. In general the second binomial transform of k*Jacobsthal(3n)/3+(-1)^n is 1,1+k,1+11k,1+111k,... This is the case for k=3.
a(n) is the number of n-length sequences of decimal digits whose sum is divisible by 3. - Geoffrey Critzer, Jan 18 2014
This sequence appears in a family of curious cubic identities based on the Armstrong number 407 = A005188(13). See the formula section. For the analog identities based on 153 = A005188(10) see a comment on A246057 with the van der Poorten et al. reference and A281857. For those based on 370 = A005188(11) see A067275, A002277 and A281858. - Wolfdieter Lang, Feb 08 2017

Examples

			a(1)^2 = 16
a(2)^2 = 1156
a(3)^2 = 111556
a(4)^2 = 11115556
a(5)^2 = 1111155556
a(6)^2 = 111111555556
a(7)^2 = 11111115555556
a(8)^2 = 1111111155555556
a(9)^2 = 111111111555555556, etc... (see A102807). - _Philippe Deléham_, Oct 03 2011
Curious cubic identities: 407 = 4^3 + 0^3 + 7^3, 340067 = 34^3 + (00)^3 + 67^3, 334000677 = 334^3 + (000)^3 + 677^3, ... - _Wolfdieter Lang_, Feb 08 2017
		

References

  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See entry 3334 at p. 168.

Crossrefs

Programs

  • Mathematica
    nn=20; r=Solve[{s==4x s+3 x a+3x b+1,a==4x a+3x s+3x b,b==4x b+3x s+3x a},{s,a,b}]; CoefficientList[Series[s/.r,{x,0,nn}],x] (* Geoffrey Critzer, Jan 18 2014 *)
    Table[3*10^n/9 + 6/9, {n, 0, 20}] (* or *) NestList[10 # - 6 &, 1, 20] (* Michael De Vlieger, Feb 08 2017 *)
    LinearRecurrence[{11,-10},{1,4},20] (* Harvey P. Dale, Oct 07 2017 *)
  • PARI
    Vec((1-7*x)/((1-x)*(1-10*x)) + O (x^30)) \\ Michel Marcus, Feb 09 2017

Formula

a(n) = 3*10^n/9 + 6/9.
a(n) = 10*a(n-1)-6 with a(0)=1. - Vincenzo Librandi, Aug 02 2010
a(n)^3 + 0(n)^3 + A067275(n+1)^3 = concatenation(a(n), 0(n), A067275(n+1)) = A281859(n), where 0(n) denotes n 0's, n >= 1. - Wolfdieter Lang, Feb 08 2017
From Elmo R. Oliveira, Aug 17 2024: (Start)
E.g.f.: exp(x)*(exp(9*x) + 2)/3.
a(n) = 11*a(n-1) - 10*a(n-2) for n > 1. (End)

A237424 Numbers of the form (10^a + 10^b + 1)/3.

Original entry on oeis.org

1, 4, 7, 34, 37, 67, 334, 337, 367, 667, 3334, 3337, 3367, 3667, 6667, 33334, 33337, 33367, 33667, 36667, 66667, 333334, 333337, 333367, 333667, 336667, 366667, 666667, 3333334, 3333337, 3333367, 3333667, 3336667
Offset: 1

Views

Author

Ahmad J. Masad, Feb 07 2014

Keywords

Comments

Has the property that the product of any two (not necessarily distinct) terms has digits in nondecreasing order.
Conjecture: This sequence is in a sense the maximally dense sequence with this nondecreasing products property. That is, it appears that every maximal sequence is either (i) A237424, (ii) a finite set of "extra" terms plus A237424 restricted to b=0 (which is A093137), or (iii) a finite set of "extra" terms plus A237424 restricted to a=b (which is A067275). (There might be one more case, not yet identified.) - David Applegate, Feb 12 2014
See A254143 and link for products a(i)*a(j) in natural order. - Reinhard Zumkeller, Jan 28 2015

Crossrefs

Programs

  • Haskell
    a237424 = flip div 3 . (+ 1) . a052216
    -- Reinhard Zumkeller, Jan 28 2015
    
  • Magma
    A052216:=[10^(n-1) + 10^(k-1): k in [1..n], n in [1..100]];
    A237424:= func< n | (A052216[n]+1)/3 >;
    [A237424(n): n in [1..100]]; // G. C. Greubel, Feb 22 2024
    
  • Mathematica
    Union@ Flatten@ Table[(10^a + 10^b + 1)/3, {a, 0, 8}, {b, a, 8}] (* Robert G. Wilson v, Jan 26 2015 *)
    (10^#[[1]]+10^#[[2]]+1)/3&/@Tuples[Range[0,8],2]//Union (* Harvey P. Dale, May 28 2019 *)
  • PARI
    list(lim)=my(v=List(),a,t); while(1, for(b=0,a, t=(10^a+10^b+1)/3; if(t>lim, return(Set(v))); listput(v, t)); a++) \\ Charles R Greathouse IV, May 13 2015
    
  • Python
    from math import isqrt
    def A237424(n): return (10**(a:=(k:=isqrt(m:=n<<1))+(m>k*(k+1))-1)+10**(n-1-(a*(a+1)>>1))+1)//3 # Chai Wah Wu, Apr 08 2025
  • SageMath
    A052216=flatten([[10^(n-1) + 10^(k-1) for k in range(1,n+1)] for n in range(1,101)])
    def A237424(n): return (A052216[n-1]+1)//3
    [A237424(n) for n in range(1,101)] # G. C. Greubel, Feb 22 2024
    

Formula

a(n) = (A052216(n) + 1)/3. - Reinhard Zumkeller, Jan 28 2015

Extensions

Edited by David Applegate, Feb 07 2014

A109344 a(n) consists of n 4's, n-1 8's and a single 9 (in that order).

Original entry on oeis.org

49, 4489, 444889, 44448889, 4444488889, 444444888889, 44444448888889, 4444444488888889, 444444444888888889, 44444444448888888889, 4444444444488888888889, 444444444444888888888889, 44444444444448888888888889, 4444444444444488888888888889, 444444444444444888888888888889
Offset: 1

Views

Author

Nicholas Protonotarios (protost(AT)hotmail.com), Aug 21 2005

Keywords

Comments

All terms are squares. The square roots are in A067275.
In the same category, we have 729, 71289, 7112889, ... with square roots in A199688. - Michel Marcus, Mar 21 2014

Examples

			a(5) = 4444488889 because the first 5 digits are 4's, the next 5 - 1 = 4 digits are 8's and the last digit is 9.
		

References

  • Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See Table 30 at p. 61.
  • Italo Ghersi, Matematica dilettevole e curiosa, p. 112, Hoepli, Milano, 1967. [From Vincenzo Librandi, Dec 31 2008]
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, Example 5.5 on page 159.
  • Paul Zeitz, The Art and Craft of Problem Solving, John Wiley and Sons, Inc., New York, 1999.

Crossrefs

Programs

  • Maple
    a:=n->4*sum('10^i', 'i'=n..2*n-1)+8*sum('10^i', 'i'=1..n-1)+9;
  • Mathematica
    LinearRecurrence[{111,-1110,1000},{49,4489,444889},20] (* Harvey P. Dale, Nov 28 2014 *)
  • PARI
    a(n) = (2*10^n/3 + 1/3)^2 \\ David A. Corneth, Jan 27 2021

Formula

a(1)=49; a(n) = 4*(Sum_{i=n..2*n-1} 10^i) + 8*(Sum_{i=1..n-1} 10^i) + 9, n >= 2.
From R. J. Mathar, Jan 06 2009: (Start)
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) = (4*100^n + 4*10^n + 1)/9.
G.f.: x*(49 - 950*x + 1000*x^2)/((1-x)*(100*x-1)*(10*x-1)). (End)
E.g.f.: (1/9)*exp(x)*(1 + 4*exp(9*x) + 4*exp(99*x)) - 1. - Stefano Spezia, Aug 22 2019

Extensions

More terms from Harvey P. Dale, Nov 28 2014
Edited by Jon E. Schoenfield, Sep 03 2018

A281858 Curious cubic identities based on the Armstrong number 370.

Original entry on oeis.org

370, 336700, 333667000, 333366670000, 333336666700000, 333333666667000000, 333333366666670000000, 333333336666666700000000, 333333333666666667000000000, 333333333366666666670000000000, 333333333336666666666700000000000, 333333333333666666666667000000000000
Offset: 1

Views

Author

Wolfdieter Lang, Feb 08 2017

Keywords

Comments

See a comment in A067275, and the analog to the Armstrong number 153 = A005188(10) treated in A281857, 370 = A005188(11).

Examples

			n=1: 370 =  3^3 + 7^3 + 0^3; n=2: 336700 = 33^3 + 67^3 + (00)^3; n=3: 333667000 = 333^3 + 667^3 + (000)^3.
		

Crossrefs

Programs

  • Mathematica
    Table[FromDigits@ Join[ConstantArray[3, n], ReplacePart[ConstantArray[6, n], -1 -> 7], ConstantArray[0, n]], {n, 12}] (* Michael De Vlieger, Feb 08 2017 *)
  • PARI
    Vec(10*x*(37 - 7400*x + 100000*x^2) / ((1 - 10*x)*(1 - 100*x)*(1 - 1000*x)) + O(x^30)) \\ Colin Barker, Feb 08 2017

Formula

a(n) = A002277(n)^3 + A067275(n+1)^3 + 0(n)^3, n >= 1, with 0(n) standing for n 0's.
From Colin Barker, Feb 08 2017: (Start)
G.f.: 10*x*(37 - 7400*x + 100000*x^2) / ((1 - 10*x)*(1 - 100*x)*(1 - 1000*x)).
a(n) = 10^n*(1 + 10^n + 100^n) / 3.
a(n) = 1110*a(n-1) - 111000*a(n-2) + 1000000*a(n-3) for n>3. (End)

A178769 a(n) = (5*10^n + 13)/9.

Original entry on oeis.org

2, 7, 57, 557, 5557, 55557, 555557, 5555557, 55555557, 555555557, 5555555557, 55555555557, 555555555557, 5555555555557, 55555555555557, 555555555555557, 5555555555555557, 55555555555555557, 555555555555555557, 5555555555555555557, 55555555555555555557, 555555555555555555557
Offset: 0

Views

Author

Bruno Berselli, Jun 13 2010

Keywords

Crossrefs

Cf. A165246 (..17, 117, 1117,..), A173193 (..27, 227, 2227,..), A173766 (..37, 337, 3337,..), A173772 (..47, 447, 4447,..), A067275 (..67, 667, 6667,..), A002281 (..77, 777, 7777,..), A173812 (..87, 887, 8887,..), A173833 (..97, 997, 9997,..).
Cf. A093143.

Programs

  • GAP
    List([0..20], n -> (5*10^n+13)/9); # G. C. Greubel, Jan 24 2019
  • Magma
    [(5*10^n+13)/9: n in [0..20]]; // Vincenzo Librandi, Jun 06 2013
    
  • Mathematica
    CoefficientList[Series[(2 - 15 x) / ((1 - x) (1 - 10 x)), {x, 0, 20}], x] (* Vincenzo Librandi, Jun 06 2013 *)
    LinearRecurrence[{11,-10},{2,7},20] (* Harvey P. Dale, Feb 28 2017 *)
  • PARI
    vector(20, n, n--; (5*10^n+13)/9) \\ G. C. Greubel, Jan 24 2019
    
  • Sage
    [(5*10^n+13)/9 for n in (0..20)] # G. C. Greubel, Jan 24 2019
    

Formula

a(n)^(4*k+2) + 1 == 0 (mod 250) for n > 1, k >= 0.
G.f.: (2-15*x)/((1-x)*(1-10*x)).
a(n) - 11*a(n-1) + 10*a(n-2) = 0 (n > 1).
a(n) = a(n-1) + 5*10^(n-1) = 10*a(n-1) - 13 for n > 0.
a(n) = 1 + Sum_{i=0..n} A093143(i). - Bruno Berselli, Feb 16 2015
E.g.f.: exp(x)*(5*exp(9*x) + 13)/9. - Elmo R. Oliveira, Sep 09 2024

A281860 Curious identities based on the Armstrong number 371 = A005188(12).

Original entry on oeis.org

371, 336701, 333667001, 333366670001, 333336666700001, 333333666667000001, 333333366666670000001, 333333336666666700000001, 333333333666666667000000001, 333333333366666666670000000001, 333333333336666666666700000000001, 333333333333666666666667000000000001
Offset: 1

Views

Author

Wolfdieter Lang, Feb 08 2017

Keywords

Comments

See a comment in A067275.

Examples

			n=1: 371 = 3^3 + 7^3 + 1^3;
n=2: 336701 = 33^3 + 67^3 + (01)^3;
n=3: 333667001 = 333^3 + 667^3 + (001)^3.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1111,-112110,1111000,-1000000},{371,336701,333667001,333366670001},20] (* Harvey P. Dale, May 28 2024 *)
  • PARI
    Vec(x*(371 - 75480*x + 1185000*x^2 - 2000000*x^3) / ((1 - x)*(1 - 10*x)*(1 - 100*x)*(1 - 1000*x)) + O(x^30)) \\ Colin Barker, Feb 09 2017

Formula

a(n) = A002277(n) * 10^(2*n) + A067275(n+1) * 10^n + 0(n-1)1, where 0(n-1)1 stands for n-1 0's followed by a 1, for n >= 1.
a(n) = A002277(n)^3 + A067275(n+1)^3 + (0(n-1)1)^3.
From Colin Barker, Feb 09 2017: (Start)
G.f.: x*(371 - 75480*x + 1185000*x^2 - 2000000*x^3)/((1 - x)*(1 - 10*x)*(1 - 100*x)*(1 - 1000*x)).
a(n) = 1111*a(n-1) - 112110*a(n-2) + 1111000*a(n-3) - 1000000*a(n-4) for n>4.
a(n) = (3 + 10^n + 100^n + 1000^n)/3. (End)

A073553 Number of Fibonacci numbers F(k), k <= 10^n, which end in 5.

Original entry on oeis.org

2, 14, 134, 1334, 13334, 133334, 1333334, 13333334, 133333334, 1333333334, 13333333334, 133333333334, 1333333333334, 13333333333334, 133333333333334, 1333333333333334, 13333333333333334, 133333333333333334, 1333333333333333334, 13333333333333333334, 133333333333333333334, 1333333333333333333334, 13333333333333333333334
Offset: 1

Views

Author

Shyam Sunder Gupta, Aug 15 2002

Keywords

Examples

			a(2) = 14 because there are 14 Fibonacci numbers up to Fibonacci(10^2) = 354224848179261915075 which end in 5.
		

Crossrefs

Formula

a(n) = (2*10^n + 10)/15. - Robert Gerbicz, Sep 06 2002
From Alois P. Heinz, Sep 26 2021: (Start)
G.f.: 2*x*(1 - 4*x)/((1 - x)*(1 - 10*x)).
a(n) = 2 * A067275(n). (End)
From Elmo R. Oliveira, Aug 26 2024: (Start)
E.g.f.: (2*exp(x)*(exp(9*x) + 5) - 12)/15.
a(n) = 11*a(n-1) - 10*a(n-2) for n > 2. (End)

Extensions

More terms from Robert Gerbicz, Sep 06 2002
Example clarified by Harvey P. Dale, Sep 26 2021
Showing 1-10 of 14 results. Next