cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A067275 Number of Fibonacci numbers A000045(k), k <= 10^n, which end in 4.

Original entry on oeis.org

0, 1, 7, 67, 667, 6667, 66667, 666667, 6666667, 66666667, 666666667, 6666666667, 66666666667, 666666666667, 6666666666667, 66666666666667, 666666666666667, 6666666666666667, 66666666666666667, 666666666666666667, 6666666666666666667, 66666666666666666667, 666666666666666666667
Offset: 0

Views

Author

Joseph L. Pe, Feb 21 2002

Keywords

Comments

Numbers n such that the digits of A000326(n), the n-th pentagonal number, begin with n. [original definition of this sequence]
The sequence 1,7,67.... has a(n) = 6*10^n/9+3/9. It is the second binomial transform of 6*A001045(3n)/3 + (-1)^n. In general the second binomial transform of k*Jacobsthal(3n)/3+(-1)^n is k*10^n/9 + (1-k/9) = 1, 1+k, 1+11k, 1+111k, ... - Paul Barry, Mar 24 2004
Except for the first two terms, these are the 3-automorphic numbers ending in 7. - Eric M. Schmidt, Aug 28 2012
From Wolfdieter Lang, Feb 08 2017: (Start)
This sequence appears in curious identities based on the Armstrong numbers 370 = A005188(11), 371 = A005188(12) and 407 = A005188(13).
For such identities based on 153 = A005188(10) see a comment in A246057 with the van der Poorten et al. reference.
For 370 these identities are A002277(n)^3 + a(n+1)^3 + 0(n)^3 = A002277(n)*10^(2*n) + a(n+1)*10^n + 0(n) = A281858(n), where 0(n) means n 0's.
For 371 these identities are A002277(n)^3 + a(n+1)^3 + (0(n-1)1)^3 = A002277(n)*10^(2*n) + a(n+1)*10^n + 0(n-1)1 = A281860(n), where 0(n-1)1 means n-1 0's followed by a 1.
For 407 these identities are A093137(n)^3 + 0(n)^3 + a(n+1)^3 = concatenation(A093137(n), 0(n), a(n+1)) = A281859(n). (End)

Examples

			a(2) = 7 because 7 of the first 10^2 Fibonacci numbers end in 4.
From _Wolfdieter Lang_, Feb 08 2017: (Start)
Curious cubic identities:
3^3 + 7^3 + 0^3 = 370, 33^3 + 67^3 + (00)^3 = 336700, 333^3 + 667^3 + (000)^3 = 333667000, ...
3^3 + 7^3 + 1^3 = 371, 33^3 + 67^3 + (01)^3 = 336701, 333^3 + 667^3 + (001)^3 = 333667001, ...
4^3 + 0^3 + 7^3 = 407, 34^3 + (00)^3 + 67^3 = 340067 , 334^3 + (000)^3 + 677^3 = 334000677, ... (End)
		

Crossrefs

Programs

  • Mathematica
    s = Fibonacci@ Range[10^5]; Table[Count[Take[s, 10^n], m_ /; Mod[m, 10] == 4], {n, 0, Floor@ Log10@ Length@ s}] (* or *) Table[Boole[n > 0] Ceiling[10^n/15], {n, 0, 20}] (* or *) CoefficientList[Series[x (1 - 4 x)/((1 - x) (1 - 10 x)), {x, 0, 20}], x] (* Michael De Vlieger, Feb 08 2017 *)
  • PARI
    a(n)=(10^n+13)\15 \\ Charles R Greathouse IV, Jun 05 2011

Formula

a(n) = ceiling((2/30)*10^n) - Benoit Cloitre, Aug 27 2002
From Paul Barry, Mar 24 2004: (Start)
G.f.: x*(1 - 4*x)/((1 - x)*(1 - 10*x)).
a(n) = 10^n/15 + 1/3 for n>0. (End)
a(n) = 10*a(n-1) - 3 for n>1. - Vincenzo Librandi, Dec 07 2010 [Immediate consequence of the previous formula, R. J. Mathar]
From Eric M. Schmidt, Oct 28 2012: (Start)
For n>0, a(n) = A199682(n-1)/3 = (2*10^(n-1) + 1)/3.
For n>=2, a(n+1) = a(n) + 6*10^n. (End)
From Elmo R. Oliveira, Jul 22 2025: (Start)
E.g.f.: (-6 + 5*exp(x) + exp(10*x))/15.
a(n) = 11*a(n-1) - 10*a(n-2) for n >= 3.
a(n) = A073553(n)/2 for n >= 1. (End)

Extensions

A073552 merged into this sequence by Eric M. Schmidt, Oct 28 2012

A102807 a(n) is the square of one plus the number consisting of n 3's.

Original entry on oeis.org

1, 16, 1156, 111556, 11115556, 1111155556, 111111555556, 11111115555556, 1111111155555556, 111111111555555556, 11111111115555555556, 1111111111155555555556, 111111111111555555555556, 11111111111115555555555556, 1111111111111155555555555556, 111111111111111555555555555556
Offset: 0

Views

Author

Ron Knott, Feb 27 2005

Keywords

Comments

Old name was: The number (333...334)^2.
An infinite sequence of squares with no zeros in base 10.
a(n) = A104265(2n) for n > 0. - Chai Wah Wu, Mar 24 2020

References

  • Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See Table 31 at p. 61.
  • Italo Ghersi, Matematica dilettevole e curiosa, pp. 111-112, Hoepli, Milano, 1967. [Vincenzo Librandi, Dec 31 2008]

Crossrefs

Programs

  • Maple
    a:= n-> (1+parse(cat(0, 3$n)))^2:
    seq(a(n), n=0..20);  # Alois P. Heinz, Sep 03 2018
  • Mathematica
    Table[(10^n + 2)^2/9, {n, 0, 20}] (* Paolo Xausa, Jun 26 2024 *)

Formula

From R. J. Mathar, Jan 06 2009: (Start)
a(n) = (100^n + 4*10^n + 4)/9.
G.f.: (1 - 95*x + 490*x^2)/((1-x)*(100*x-1)*(10*x-1)). (End)
E.g.f.: exp(x)*(4 + 4*exp(9*x) + exp(99*x))/9. - Stefano Spezia, Jul 31 2024

Extensions

New name from Alois P. Heinz, Sep 03 2018

A177769 a(n) = 111*n.

Original entry on oeis.org

111, 222, 333, 444, 555, 666, 777, 888, 999, 1110, 1221, 1332, 1443, 1554, 1665, 1776, 1887, 1998, 2109, 2220, 2331, 2442, 2553, 2664, 2775, 2886, 2997, 3108, 3219, 3330, 3441, 3552, 3663, 3774, 3885, 3996, 4107, 4218, 4329, 4440, 4551, 4662, 4773, 4884, 4995, 5106
Offset: 1

Views

Author

Paul Curtz, May 13 2010

Keywords

Comments

The reference contains also sequences A102807, A109344, A075415, and A109492.

Crossrefs

Programs

Formula

G.f.: 111*x/(x-1)^2.
a(n) = 2*a(n-1) - a(n-2).
a(n) = a(n-1) + 111.
E.g.f.: 111*x*exp(x). - Stefano Spezia, Sep 15 2023

A181719 a(n) = A133473(n+1)^2.

Original entry on oeis.org

25, 1225, 112225, 11122225, 1111222225, 111112222225, 11111122222225, 1111111222222225, 111111112222222225, 11111111122222222225, 1111111111222222222225, 111111111112222222222225, 11111111111122222222222225, 1111111111111222222222222225, 111111111111112222222222222225
Offset: 1

Views

Author

Paul Curtz, Nov 17 2010

Keywords

Crossrefs

Programs

  • Magma
    [(100^n+10*10^n+25)/9: n in [1..20]]; // Vincenzo Librandi, Jun 02 2011
    
  • Mathematica
    (5+10^Range[30])^2/9 (* G. C. Greubel, Mar 25 2024 *)
    LinearRecurrence[{111,-1110,1000},{25,1225,112225},20] (* Harvey P. Dale, Feb 22 2025 *)
  • PARI
    a(n)=(100^n+10*10^n+25)/9 \\ Charles R Greathouse IV, Jun 01 2011
    
  • PARI
    Vec(5*x*(1 - 62*x + 160*x^2) / ((1 - x)*(1 - 10*x)*(1 - 100*x)) + O(x^17)) \\ Colin Barker, Aug 21 2019
    
  • SageMath
    [(5+10^n)^2//9 for n in range(1,31)] # G. C. Greubel, Mar 25 2024

Formula

a(n) = 100 * A181718(n-1) + 25.
a(n) = 25 * A109344(n-1), for n > 1.
From Colin Barker, Aug 21 2019: (Start)
G.f.: x*(1 - 62*x + 160*x^2) / ((1 - x)*(1 - 10*x)*(1 - 100*x)).
a(n) = (5 + 10^n)^2 / 9.
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n>3. (End)
E.g.f.: (1/9)*exp(x)*(25 + 10*exp(9*x) + exp(99*x)). - Stefano Spezia, Aug 21 2019 after Colin Barker

Extensions

Formulas edited by Eric M. Schmidt, Oct 29 2012

A309827 a(n) is the square of the number consisting of one 1 and n 6's: (166...6)^2.

Original entry on oeis.org

1, 256, 27556, 2775556, 277755556, 27777555556, 2777775555556, 277777755555556, 27777777555555556, 2777777775555555556, 277777777755555555556, 27777777777555555555556, 2777777777775555555555556, 277777777777755555555555556, 27777777777777555555555555556
Offset: 0

Views

Author

Seiichi Manyama, Aug 23 2019

Keywords

Comments

All terms are zeroless (element of A052382).

Crossrefs

((k*10^n+3-k)/3)^2: A102807 (k=1), A109344 (k=2), A098608 (k=3), A309907 (k=4), this sequence (k=5).

Programs

  • Mathematica
    LinearRecurrence[{111,-1110,1000},{1,256,27556},20] (* Harvey P. Dale, Dec 13 2021 *)
  • PARI
    {a(n) = ((5*10^n-2)/3)^2}
    
  • PARI
    N=20; x='x+O('x^N); Vec((1+145*x+250*x^2)/((1-x)*(1-10*x)*(1-100*x)))

Formula

a(n) = A246057(n)^2 = ((5*10^n-2)/3)^2.
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3).
G.f.: (1+145*x+250*x^2)/((1-x)*(1-10*x)*(1-100*x)).

A309828 Squares formed by concatenating k and 2*k+1.

Original entry on oeis.org

25, 49, 1225, 4489, 112225, 444889, 11122225, 44448889, 816416329, 1111222225, 1451229025, 3832476649, 4444488889, 111112222225, 444444888889, 10185602037121, 11111122222225, 44444448888889, 46355849271169, 997230019944601, 1111111222222225, 1231148024622961
Offset: 1

Views

Author

Marius A. Burtea, Aug 18 2019

Keywords

Comments

The sequence is infinite. The squares of the form 66...67^2 = 4..48..89 are terms.
Another infinite family is the squares 33...35^2 = 1...122...25. - Robert Israel, Aug 20 2019

Examples

			5^2 = 25 = 2_(2 * 2 + 1);
7^2 = 49 = 4_(2 * 4 + 1);
35^2 = 1225 = 12_(2 * 12 + 1);
61907^2 = 3832476649 = 38324_(2 * 38324 + 1).
		

References

  • Ion Cucurezeanu, Perfect squares and cubes of integers, Ed. Gil, Zalău, (2007), ch. 4, p. 25, pr. 211, 212 (in Romanian).

Crossrefs

Programs

  • Magma
    [a:n in [1..30000000]|IsSquare(a) where a is 10^(#Intseq(2*n+1))*n+2*n+1];
    
  • Maple
    F:= proc(m) local x,X,A;
      X:= [numtheory:-rootsunity(2,10^m+2)];
      A:= map(x -> (x^2-1)/(10^m+2), X);
      A:= sort(select(x -> 2*x+1>=10^(m-1) and 2*x+1<10^m, A));
      op(map(x -> x*10^m+2*x+1, A))
    end proc:
    subsop(1=NULL, [seq(F(m),m=1..10)]); # Robert Israel, Aug 20 2019
  • Mathematica
    Select[Array[FromDigits@ Flatten@ IntegerDigits[{#, 2 # + 1}] &, 10^5],
    IntegerQ@ Sqrt@ # &] (* Michael De Vlieger, Aug 19 2019 *)
  • Python
    def Test(n):
        s = str(n)
        ps, ss = s[0:len(s)//2], s[len(s)//2:len(s)]
        return int(ss) == 2*int(ps)+1 and s[len(s)//2] != "0"
    n, a = 1, 4
    while n < 23:
        if Test(a*a):
            print(n,a*a)
            n = n+1
        a = a+1 # A.H.M. Smeets, Aug 19 2019
    
  • Python
    from itertools import count, islice
    from sympy.ntheory.primetest import is_square
    def A309828_gen(): # generator of terms
        return filter(is_square,(int(str(k)+str((k<<1)+1)) for k in count(1)))
    A309828_list = list(islice(A309828_gen(),20)) # Chai Wah Wu, Feb 20 2023
Showing 1-6 of 6 results.