Original entry on oeis.org
1, 77, 7437, 741037, 74077037, 7407437037, 740741037037, 74074077037037, 7407407437037037, 740740741037037037, 74074074077037037037, 7407407407437037037037, 740740740741037037037037
Offset: 1
n = 20: a[20] = 1111111111111111111155555555555555555555/15 = 74074074074074074077037037037037037037.
A003555
Sum_{i=1..(10^n - 1)/9} i, or ((10^n -1)/9)*((10^n -1)/9 +1)/2 (n-th term is the middle 2(n-1) digits of the (n+9)-th term for n > 1).
Original entry on oeis.org
1, 66, 6216, 617716, 61732716, 6172882716, 617284382716, 61728399382716, 6172839549382716, 617283951049382716, 61728395066049382716, 6172839506216049382716, 617283950617716049382716, 61728395061732716049382716, 6172839506172882716049382716
Offset: 1
Daniel Lawson (dlawson(AT)cats.ucsc.edu)
-
f[x_] := 1*((100^x-1)/9) + 7*(10^x-1)/9 Table[f[w], {w, 1, 20}]/18 (* Labos Elemer, Oct 28 2004 *)
-
Vec(x*(-1+45*x)/((x-1)*(100*x-1)*(10*x-1))+O(x^99)) \\ Charles R Greathouse IV, Jun 23 2020
A184337
a(n) is the integer whose decimal representation consists of n 8's followed by n 1's.
Original entry on oeis.org
0, 81, 8811, 888111, 88881111, 8888811111, 888888111111, 88888881111111, 8888888811111111, 888888888111111111, 88888888881111111111, 8888888888811111111111, 888888888888111111111111, 88888888888881111111111111
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Richard Blecksmith and Charles Nicol, Monotonic Numbers, Mathematics Magazine, 66, (1993), 257-262.
- Index entries for linear recurrences with constant coefficients, signature (111,-1110,1000).
Cf.
A098210 (with 1 and 5 instead of 8 and 1).
-
[(8*100^n-7*10^n-1)/9: n in [0..20]]; // Vincenzo Librandi, Aug 04 2011
-
Table[(8*100^n - 7*10^n - 1)/9, {n,0,30}] (* G. C. Greubel, Nov 02 2018 *)
FromDigits/@Table[Join[PadRight[{},n,8],PadRight[{},n,1]],{n,0,15}] (* or *) LinearRecurrence[ {111,-1110,1000},{0,81,8811},15] (* Harvey P. Dale, Jul 03 2023 *)
-
vector(30, n, n--; (8*100^n - 7*10^n - 1)/9) \\ G. C. Greubel, Nov 02 2018
-
for n in range(30):
print((8*100**n-7*10**n-1)//9, end=', ')
# Stefano Spezia, Nov 02 2018
Showing 1-3 of 3 results.
Comments