A093397
Absolute value of difference between counts of uninterrupted runs of single nonprimes in A093183 and A093184.
Original entry on oeis.org
0, 1, 2, 6, 9, 31, 88, 205, 1636, 2884, 4569, 30270, 14874
Offset: 1
a(3)=2 because in A093183 the count is 74 and in A093184 the count is 76. 76-74=2.
A093184
Number of consecutive runs of just 1 odd nonprime congruent to 3 mod 4 below 10^n.
Original entry on oeis.org
0, 4, 76, 1120, 13428, 151342, 1642285, 17405478, 181923798, 1883330510, 19364376037, 198115964781, 2019328569227
Offset: 1
a(3)=76 because 76 single nonprime runs occur below 10^3, each run interrupted by a nonprime congruent to 1 mod 4
-
A091113 = Select[4 Range[0, 10^4] + 1, ! PrimeQ[#] &];
A091236 = Select[4 Range[0, 10^4] + 3, ! PrimeQ[#] &];
lst = {}; Do[If[Length[s = Select[A091236, Between[{A091113[[i]], A091113[[i + 1]]}]]] == 1, AppendTo[lst, s]], {i, Length[A091113] - 1}]; Table[Count[Flatten[lst], x_ /; x < 10^n], {n, 4}] (* Robert Price, May 30 2019 *)
A093188
Number of consecutive runs of 3 odd nonprimes congruent to 3 mod 4 below 10^n.
Original entry on oeis.org
0, 0, 5, 49, 356, 2678, 21085, 166814, 1345812, 11080939, 92699035, 786630700, 6757485506
Offset: 1
a(3)=5 because 5 nonprime runs of 3 occur below 10^3, each run interrupted by a nonprime congruent to 1 mod 4.
-
A091113 = Select[4 Range[0, 10^4] + 1, ! PrimeQ[#] &];
A091236 = Select[4 Range[0, 10^4] + 3, ! PrimeQ[#] &];
lst = {}; Do[If[Length[s = Select[A091236, Between[{A091113[[i]], A091113[[i + 1]]}]]] == 3, AppendTo[lst, Last[s]]], {i, Length[A091113] - 1}]; Table[Count[lst, x_ /; x < 10^n], {n, 4}] (* Robert Price, May 31 2019 *)
A093185
Number of consecutive runs of 2 odd nonprimes congruent to 1 mod 4 below 10^n.
Original entry on oeis.org
1, 4, 33, 309, 2805, 25566, 230989, 2106529, 19303539, 177948527, 1649241049, 15360074924, 143682925080
Offset: 1
a(3)=33 because 33 nonprime runs of 2 occur below 10^3, each run interrupted by a nonprime congruent to 3 mod 4
-
A091113 = Select[4 Range[0, 10^4] + 1, ! PrimeQ[#] &];
A091236 = Join[{0}, Select[4 Range[0, 10^4] + 3, ! PrimeQ[#] &]];
lst = {}; Do[If[Length[s = Select[A091113, Between[{A091236[[i]], A091236[[i + 1]]}]]] == 2, AppendTo[lst, Last[s]]], {i, Length[A091236] - 1}]; Table[Count[lst, x_ /; x < 10^n], {n, 4}] (* Robert Price, May 30 2019 *)
A093186
Number of consecutive runs of 2 odd nonprimes congruent to 3 mod 4 below 10^n.
Original entry on oeis.org
0, 4, 36, 307, 2848, 25651, 231031, 2106565, 19307362, 177948719, 1649246163, 15360077721, 143683073300
Offset: 1
a(3)=36 because 36 nonprime runs of 2 occur below 10^3, each run interrupted by a nonprime congruent to 1 mod 4.
-
A091113 = Select[4 Range[0, 10^4] + 1, ! PrimeQ[#] &];
A091236 = Select[4 Range[0, 10^4] + 3, ! PrimeQ[#] &];
lst = {}; Do[If[Length[s = Select[A091236, Between[{A091113[[i]], A091113[[i + 1]]}]]] == 2, AppendTo[lst, Last[s]]], {i, Length[A091113] - 1}]; Table[Count[lst, x_ /; x < 10^n], {n, 4}] (* Robert Price, May 30 2019 *)
A093187
Number of consecutive runs of 3 odd nonprimes congruent to 1 mod 4 below 10^n.
Original entry on oeis.org
0, 1, 10, 53, 390, 2794, 21215, 167055, 1347999, 11084015, 92708718, 786663767, 6757618852
Offset: 1
a(3)=10 because 10 nonprime runs of 3 occur below 10^3, each run interrupted by a nonprime congruent to 3 mod 4.
-
Accumulate@ Table[Length@ SequencePosition[Range[10^n + 1, 10^(n + 1) - 1, 2] /. {p_ /; PrimeQ@ p -> Nothing, k_ /; Mod[k, 4] == 1 -> 1, k_ /; Mod[k, 4] == 3 -> 3}, {1, 1, 1, 3}], {n, 0, 6}] (* Michael De Vlieger, Jan 02 2017 *)
Showing 1-6 of 6 results.