cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A093399 Absolute value of difference between counts of uninterrupted runs of 3 nonprimes in A093187 and A093188.

Original entry on oeis.org

0, 1, 5, 4, 34, 116, 130, 241, 2187, 3076, 9683, 33067, 133346
Offset: 1

Views

Author

Enoch Haga, Mar 30 2004

Keywords

Examples

			a(3)=5 because in A093187 the count is 10 and in A093188 the count is 5. 10-5=5.
		

Crossrefs

Formula

Take the absolute value of differences between counts of runs of 3 odd nonprimes congruent to 1 mod 4 and 3 mod 4
a(n) = abs(A093187(n) - A093188(n))

Extensions

a(9)-a(13) from Lucas A. Brown, Sep 19 2024

A093184 Number of consecutive runs of just 1 odd nonprime congruent to 3 mod 4 below 10^n.

Original entry on oeis.org

0, 4, 76, 1120, 13428, 151342, 1642285, 17405478, 181923798, 1883330510, 19364376037, 198115964781, 2019328569227
Offset: 1

Views

Author

Enoch Haga, Mar 30 2004

Keywords

Examples

			a(3)=76 because 76 single nonprime runs occur below 10^3, each run interrupted by a nonprime congruent to 1 mod 4
		

Crossrefs

Programs

  • Mathematica
    A091113 = Select[4 Range[0, 10^4] + 1, ! PrimeQ[#] &];
    A091236 = Select[4 Range[0, 10^4] + 3, ! PrimeQ[#] &];
    lst = {}; Do[If[Length[s = Select[A091236, Between[{A091113[[i]], A091113[[i + 1]]}]]] == 1, AppendTo[lst, s]], {i, Length[A091113] - 1}]; Table[Count[Flatten[lst], x_ /; x < 10^n], {n, 4}]  (* Robert Price, May 30 2019 *)

Formula

Generate the odd nonprime sequence with nonprimes labeled 1 mod 4 or 3 mod 4. Add count of nonprimes to sequence if just 1 nonprime congruent to 3 mod 4 occurs before interruption of a nonprime congruent to 1 mod 4.

Extensions

a(9)-a(13) from Bert Dobbelaere, Dec 19 2018

A093188 Number of consecutive runs of 3 odd nonprimes congruent to 3 mod 4 below 10^n.

Original entry on oeis.org

0, 0, 5, 49, 356, 2678, 21085, 166814, 1345812, 11080939, 92699035, 786630700, 6757485506
Offset: 1

Views

Author

Enoch Haga, Mar 30 2004

Keywords

Examples

			a(3)=5 because 5 nonprime runs of 3 occur below 10^3, each run interrupted by a nonprime congruent to 1 mod 4.
		

Crossrefs

Programs

  • Mathematica
    A091113 = Select[4 Range[0, 10^4] + 1, ! PrimeQ[#] &];
    A091236 = Select[4 Range[0, 10^4] + 3, ! PrimeQ[#] &];
    lst = {}; Do[If[Length[s = Select[A091236, Between[{A091113[[i]], A091113[[i + 1]]}]]] == 3, AppendTo[lst, Last[s]]], {i, Length[A091113] - 1}]; Table[Count[lst, x_ /; x < 10^n], {n, 4}]  (* Robert Price, May 31 2019 *)

Formula

Generate the odd nonprime sequence with nonprimes labeled 1 mod 4 or 3 mod 4. Add count of nonprimes to sequence if 3 nonprimes congruent to 3 mod 4 occur before interruption of a nonprime congruent to 1 mod 4

Extensions

a(9)-a(13) from Bert Dobbelaere, Dec 19 2018

A093185 Number of consecutive runs of 2 odd nonprimes congruent to 1 mod 4 below 10^n.

Original entry on oeis.org

1, 4, 33, 309, 2805, 25566, 230989, 2106529, 19303539, 177948527, 1649241049, 15360074924, 143682925080
Offset: 1

Views

Author

Enoch Haga, Mar 30 2004

Keywords

Examples

			a(3)=33 because 33 nonprime runs of 2 occur below 10^3, each run interrupted by a nonprime congruent to 3 mod 4
		

Crossrefs

Programs

  • Mathematica
    A091113 = Select[4 Range[0, 10^4] + 1, ! PrimeQ[#] &];
    A091236 = Join[{0}, Select[4 Range[0, 10^4] + 3, ! PrimeQ[#] &]];
    lst = {}; Do[If[Length[s = Select[A091113, Between[{A091236[[i]], A091236[[i + 1]]}]]] == 2, AppendTo[lst, Last[s]]], {i, Length[A091236] - 1}]; Table[Count[lst, x_ /; x < 10^n], {n, 4}]  (* Robert Price, May 30 2019 *)

Formula

Generate the odd nonprime sequence with nonprimes labeled 1 mod 4 or 3 mod 4. Add count of nonprimes to sequence if 2 nonprimes congruent to 1 mod 4 occur before interruption of a nonprime congruent to 3 mod 4.

Extensions

a(9)-a(13) from Bert Dobbelaere, Dec 19 2018

A093186 Number of consecutive runs of 2 odd nonprimes congruent to 3 mod 4 below 10^n.

Original entry on oeis.org

0, 4, 36, 307, 2848, 25651, 231031, 2106565, 19307362, 177948719, 1649246163, 15360077721, 143683073300
Offset: 1

Views

Author

Enoch Haga, Mar 30 2004

Keywords

Examples

			a(3)=36 because 36 nonprime runs of 2 occur below 10^3, each run interrupted by a nonprime congruent to 1 mod 4.
		

Crossrefs

Programs

  • Mathematica
    A091113 = Select[4 Range[0, 10^4] + 1, ! PrimeQ[#] &];
    A091236 = Select[4 Range[0, 10^4] + 3, ! PrimeQ[#] &];
    lst = {}; Do[If[Length[s = Select[A091236, Between[{A091113[[i]], A091113[[i + 1]]}]]] == 2, AppendTo[lst, Last[s]]], {i, Length[A091113] - 1}]; Table[Count[lst, x_ /; x < 10^n], {n, 4}]  (* Robert Price, May 30 2019 *)

Formula

Generate the odd nonprime sequence with nonprimes labeled 1 mod 4 or 3 mod 4. Add count of nonprimes to sequence if 2 nonprimes congruent to 3 mod 4 occur before interruption of a nonprime congruent to 1 mod 4

Extensions

a(9)-a(13) from Bert Dobbelaere, Dec 19 2018
Showing 1-5 of 5 results.