cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A093397 Absolute value of difference between counts of uninterrupted runs of single nonprimes in A093183 and A093184.

Original entry on oeis.org

0, 1, 2, 6, 9, 31, 88, 205, 1636, 2884, 4569, 30270, 14874
Offset: 1

Views

Author

Enoch Haga, Mar 30 2004

Keywords

Examples

			a(3)=2 because in A093183 the count is 74 and in A093184 the count is 76. 76-74=2.
		

Crossrefs

Formula

Take the absolute value of differences between counts of runs of single nonprimes congruent to 1 mod 4 and 3 mod 4

Extensions

a(9)-a(13) from Robert Price, May 30 2019

A093183 Number of consecutive runs of just 1 odd nonprime congruent to 1 mod 4 below 10^n.

Original entry on oeis.org

0, 3, 74, 1114, 13437, 151311, 1642197, 17405273, 181925434, 1883327626, 19364371468, 198115934511, 2019328584101
Offset: 1

Views

Author

Enoch Haga, Mar 30 2004

Keywords

Comments

Split the odd nonprime sequence A014076 into two subsequences A091113 and A091236 with nonprimes labeled 1 mod 4 or 3 mod 4. Add count of nonprimes to sequence if just 1 nonprime congruent to 1 mod 4 occurs before interruption of a nonprime congruent to 3 mod 4.
Otherwise said: count the nonprimes congruent to 1 mod 4 such that the next larger and next smaller odd nonprime is congruent to 3 mod 4. - M. F. Hasler, Sep 30 2018

Examples

			a(3) = 74 because 74 single nonprime runs occur below 10^3, each run interrupted by a nonprime congruent to 3 mod 4.
Below 10^2 = 100, there are only a(2) = 3 isolated odd nonprimes congruent to 1 mod 4: 33, 57 and 93. (Credits: _Peter Munn_, SeqFan list.) - _M. F. Hasler_, Sep 30 2018
		

Crossrefs

Programs

  • Maple
    A014076 := proc(n)
        option remember;
        if n = 1 then
            1;
        else
            for a from procname(n-1)+2 by 2 do
                if not isprime(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    isA091113 := proc(n)
        option remember;
        if modp(n,4) = 1 and not isprime(n) then
            true;
        else
            false;
        end if;
    end proc:
    isA091236 := proc(n)
        option remember;
        if modp(n,4) = 3 and not isprime(n) then
            true;
        else
            false;
        end if;
    end proc:
    ct := 0 :
    n := 1 :
    for i from 2 do
        odnpr := A014076(i) ;
        prev := A014076(i-1) ;
        nxt := A014076(i+1) ;
        if isA091113(odnpr) and isA091236(prev) and isA091236(nxt) then
            ct := ct+1 ;
        end if;
        if odnpr< 10^n and nxt >= 10^n then
            print(n,ct) ;
            n := n+1 ;
        end if;
    end do: # R. J. Mathar, Oct 02 2018
  • Mathematica
    A091113 = Select[4 Range[0, 10^5] + 1, ! PrimeQ[#] &];
    A091236 = Select[4 Range[0, 10^5] + 3, ! PrimeQ[#] &];
    lst = {}; Do[If[Length[s = Select[A091113,Between[{A091236[[i]], A091236[[i + 1]]}]]] == 1, AppendTo[lst, s]], {i, Length[A091236] - 1}]; Table[Count[Flatten[lst], x_ /; x < 10^n], {n, 5}]  (* Robert Price, May 30 2019 *)

Extensions

a(9)-a(13) from Bert Dobbelaere, Dec 19 2018

A093188 Number of consecutive runs of 3 odd nonprimes congruent to 3 mod 4 below 10^n.

Original entry on oeis.org

0, 0, 5, 49, 356, 2678, 21085, 166814, 1345812, 11080939, 92699035, 786630700, 6757485506
Offset: 1

Views

Author

Enoch Haga, Mar 30 2004

Keywords

Examples

			a(3)=5 because 5 nonprime runs of 3 occur below 10^3, each run interrupted by a nonprime congruent to 1 mod 4.
		

Crossrefs

Programs

  • Mathematica
    A091113 = Select[4 Range[0, 10^4] + 1, ! PrimeQ[#] &];
    A091236 = Select[4 Range[0, 10^4] + 3, ! PrimeQ[#] &];
    lst = {}; Do[If[Length[s = Select[A091236, Between[{A091113[[i]], A091113[[i + 1]]}]]] == 3, AppendTo[lst, Last[s]]], {i, Length[A091113] - 1}]; Table[Count[lst, x_ /; x < 10^n], {n, 4}]  (* Robert Price, May 31 2019 *)

Formula

Generate the odd nonprime sequence with nonprimes labeled 1 mod 4 or 3 mod 4. Add count of nonprimes to sequence if 3 nonprimes congruent to 3 mod 4 occur before interruption of a nonprime congruent to 1 mod 4

Extensions

a(9)-a(13) from Bert Dobbelaere, Dec 19 2018

A093185 Number of consecutive runs of 2 odd nonprimes congruent to 1 mod 4 below 10^n.

Original entry on oeis.org

1, 4, 33, 309, 2805, 25566, 230989, 2106529, 19303539, 177948527, 1649241049, 15360074924, 143682925080
Offset: 1

Views

Author

Enoch Haga, Mar 30 2004

Keywords

Examples

			a(3)=33 because 33 nonprime runs of 2 occur below 10^3, each run interrupted by a nonprime congruent to 3 mod 4
		

Crossrefs

Programs

  • Mathematica
    A091113 = Select[4 Range[0, 10^4] + 1, ! PrimeQ[#] &];
    A091236 = Join[{0}, Select[4 Range[0, 10^4] + 3, ! PrimeQ[#] &]];
    lst = {}; Do[If[Length[s = Select[A091113, Between[{A091236[[i]], A091236[[i + 1]]}]]] == 2, AppendTo[lst, Last[s]]], {i, Length[A091236] - 1}]; Table[Count[lst, x_ /; x < 10^n], {n, 4}]  (* Robert Price, May 30 2019 *)

Formula

Generate the odd nonprime sequence with nonprimes labeled 1 mod 4 or 3 mod 4. Add count of nonprimes to sequence if 2 nonprimes congruent to 1 mod 4 occur before interruption of a nonprime congruent to 3 mod 4.

Extensions

a(9)-a(13) from Bert Dobbelaere, Dec 19 2018

A093186 Number of consecutive runs of 2 odd nonprimes congruent to 3 mod 4 below 10^n.

Original entry on oeis.org

0, 4, 36, 307, 2848, 25651, 231031, 2106565, 19307362, 177948719, 1649246163, 15360077721, 143683073300
Offset: 1

Views

Author

Enoch Haga, Mar 30 2004

Keywords

Examples

			a(3)=36 because 36 nonprime runs of 2 occur below 10^3, each run interrupted by a nonprime congruent to 1 mod 4.
		

Crossrefs

Programs

  • Mathematica
    A091113 = Select[4 Range[0, 10^4] + 1, ! PrimeQ[#] &];
    A091236 = Select[4 Range[0, 10^4] + 3, ! PrimeQ[#] &];
    lst = {}; Do[If[Length[s = Select[A091236, Between[{A091113[[i]], A091113[[i + 1]]}]]] == 2, AppendTo[lst, Last[s]]], {i, Length[A091113] - 1}]; Table[Count[lst, x_ /; x < 10^n], {n, 4}]  (* Robert Price, May 30 2019 *)

Formula

Generate the odd nonprime sequence with nonprimes labeled 1 mod 4 or 3 mod 4. Add count of nonprimes to sequence if 2 nonprimes congruent to 3 mod 4 occur before interruption of a nonprime congruent to 1 mod 4

Extensions

a(9)-a(13) from Bert Dobbelaere, Dec 19 2018

A093187 Number of consecutive runs of 3 odd nonprimes congruent to 1 mod 4 below 10^n.

Original entry on oeis.org

0, 1, 10, 53, 390, 2794, 21215, 167055, 1347999, 11084015, 92708718, 786663767, 6757618852
Offset: 1

Views

Author

Enoch Haga, Mar 30 2004

Keywords

Examples

			a(3)=10 because 10 nonprime runs of 3 occur below 10^3, each run interrupted by a nonprime congruent to 3 mod 4.
		

Crossrefs

Programs

  • Mathematica
    Accumulate@ Table[Length@ SequencePosition[Range[10^n + 1, 10^(n + 1) - 1, 2] /. {p_ /; PrimeQ@ p -> Nothing, k_ /; Mod[k, 4] == 1 -> 1, k_ /; Mod[k, 4] == 3 -> 3}, {1, 1, 1, 3}], {n, 0, 6}] (* Michael De Vlieger, Jan 02 2017 *)

Formula

Generate the odd nonprime sequence with nonprimes labeled 1 mod 4 or 3 mod 4. Add count of nonprimes to sequence if 3 nonprimes congruent to 1 mod 4 occur before interruption of a nonprime congruent to 3 mod 4.

Extensions

a(9)-a(13) from Bert Dobbelaere, Dec 19 2018
Showing 1-6 of 6 results.