A093397
Absolute value of difference between counts of uninterrupted runs of single nonprimes in A093183 and A093184.
Original entry on oeis.org
0, 1, 2, 6, 9, 31, 88, 205, 1636, 2884, 4569, 30270, 14874
Offset: 1
a(3)=2 because in A093183 the count is 74 and in A093184 the count is 76. 76-74=2.
A093183
Number of consecutive runs of just 1 odd nonprime congruent to 1 mod 4 below 10^n.
Original entry on oeis.org
0, 3, 74, 1114, 13437, 151311, 1642197, 17405273, 181925434, 1883327626, 19364371468, 198115934511, 2019328584101
Offset: 1
a(3) = 74 because 74 single nonprime runs occur below 10^3, each run interrupted by a nonprime congruent to 3 mod 4.
Below 10^2 = 100, there are only a(2) = 3 isolated odd nonprimes congruent to 1 mod 4: 33, 57 and 93. (Credits: _Peter Munn_, SeqFan list.) - _M. F. Hasler_, Sep 30 2018
-
A014076 := proc(n)
option remember;
if n = 1 then
1;
else
for a from procname(n-1)+2 by 2 do
if not isprime(a) then
return a;
end if;
end do:
end if;
end proc:
isA091113 := proc(n)
option remember;
if modp(n,4) = 1 and not isprime(n) then
true;
else
false;
end if;
end proc:
isA091236 := proc(n)
option remember;
if modp(n,4) = 3 and not isprime(n) then
true;
else
false;
end if;
end proc:
ct := 0 :
n := 1 :
for i from 2 do
odnpr := A014076(i) ;
prev := A014076(i-1) ;
nxt := A014076(i+1) ;
if isA091113(odnpr) and isA091236(prev) and isA091236(nxt) then
ct := ct+1 ;
end if;
if odnpr< 10^n and nxt >= 10^n then
print(n,ct) ;
n := n+1 ;
end if;
end do: # R. J. Mathar, Oct 02 2018
-
A091113 = Select[4 Range[0, 10^5] + 1, ! PrimeQ[#] &];
A091236 = Select[4 Range[0, 10^5] + 3, ! PrimeQ[#] &];
lst = {}; Do[If[Length[s = Select[A091113,Between[{A091236[[i]], A091236[[i + 1]]}]]] == 1, AppendTo[lst, s]], {i, Length[A091236] - 1}]; Table[Count[Flatten[lst], x_ /; x < 10^n], {n, 5}] (* Robert Price, May 30 2019 *)
A093188
Number of consecutive runs of 3 odd nonprimes congruent to 3 mod 4 below 10^n.
Original entry on oeis.org
0, 0, 5, 49, 356, 2678, 21085, 166814, 1345812, 11080939, 92699035, 786630700, 6757485506
Offset: 1
a(3)=5 because 5 nonprime runs of 3 occur below 10^3, each run interrupted by a nonprime congruent to 1 mod 4.
-
A091113 = Select[4 Range[0, 10^4] + 1, ! PrimeQ[#] &];
A091236 = Select[4 Range[0, 10^4] + 3, ! PrimeQ[#] &];
lst = {}; Do[If[Length[s = Select[A091236, Between[{A091113[[i]], A091113[[i + 1]]}]]] == 3, AppendTo[lst, Last[s]]], {i, Length[A091113] - 1}]; Table[Count[lst, x_ /; x < 10^n], {n, 4}] (* Robert Price, May 31 2019 *)
A093185
Number of consecutive runs of 2 odd nonprimes congruent to 1 mod 4 below 10^n.
Original entry on oeis.org
1, 4, 33, 309, 2805, 25566, 230989, 2106529, 19303539, 177948527, 1649241049, 15360074924, 143682925080
Offset: 1
a(3)=33 because 33 nonprime runs of 2 occur below 10^3, each run interrupted by a nonprime congruent to 3 mod 4
-
A091113 = Select[4 Range[0, 10^4] + 1, ! PrimeQ[#] &];
A091236 = Join[{0}, Select[4 Range[0, 10^4] + 3, ! PrimeQ[#] &]];
lst = {}; Do[If[Length[s = Select[A091113, Between[{A091236[[i]], A091236[[i + 1]]}]]] == 2, AppendTo[lst, Last[s]]], {i, Length[A091236] - 1}]; Table[Count[lst, x_ /; x < 10^n], {n, 4}] (* Robert Price, May 30 2019 *)
A093186
Number of consecutive runs of 2 odd nonprimes congruent to 3 mod 4 below 10^n.
Original entry on oeis.org
0, 4, 36, 307, 2848, 25651, 231031, 2106565, 19307362, 177948719, 1649246163, 15360077721, 143683073300
Offset: 1
a(3)=36 because 36 nonprime runs of 2 occur below 10^3, each run interrupted by a nonprime congruent to 1 mod 4.
-
A091113 = Select[4 Range[0, 10^4] + 1, ! PrimeQ[#] &];
A091236 = Select[4 Range[0, 10^4] + 3, ! PrimeQ[#] &];
lst = {}; Do[If[Length[s = Select[A091236, Between[{A091113[[i]], A091113[[i + 1]]}]]] == 2, AppendTo[lst, Last[s]]], {i, Length[A091113] - 1}]; Table[Count[lst, x_ /; x < 10^n], {n, 4}] (* Robert Price, May 30 2019 *)
A093187
Number of consecutive runs of 3 odd nonprimes congruent to 1 mod 4 below 10^n.
Original entry on oeis.org
0, 1, 10, 53, 390, 2794, 21215, 167055, 1347999, 11084015, 92708718, 786663767, 6757618852
Offset: 1
a(3)=10 because 10 nonprime runs of 3 occur below 10^3, each run interrupted by a nonprime congruent to 3 mod 4.
-
Accumulate@ Table[Length@ SequencePosition[Range[10^n + 1, 10^(n + 1) - 1, 2] /. {p_ /; PrimeQ@ p -> Nothing, k_ /; Mod[k, 4] == 1 -> 1, k_ /; Mod[k, 4] == 3 -> 3}, {1, 1, 1, 3}], {n, 0, 6}] (* Michael De Vlieger, Jan 02 2017 *)
Showing 1-6 of 6 results.
Comments