cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A111158 Number of 5 X 5 magic squares with line sum n.

Original entry on oeis.org

1, 20, 449, 6792, 67063, 484419, 2750715, 12919671, 52083292, 185179593, 592791088, 1736022657, 4710111660, 11959634412, 28654640036, 65224656452, 141850935657, 296163412400, 596041392921, 1160330645548, 2191579277799, 4026627536451, 7213267409435
Offset: 0

Views

Author

N. J. A. Sloane, using g.f. supplied by Jesús De Loera (deloera(AT)math.ucdavis.edu), Oct 22 2005

Keywords

References

  • Maya Ahmed, Jesús De Loera and Raymond Hemmecke, Polyhedral cones of magic cubes and squares, in Discrete and Computational Geometry, Springer, Berlin, 2003, pp. 25-41.

Crossrefs

Formula

G.f.: -(1 + 28*t + 639*t^2 + 11050*t^3 + 136266*t^4 + 1255833*t^5 + 9120009*t^6 + 54389347*t^7 + 274778754*t^8 + 1204206107*t^9 + 4663304831*t^10 + 16193751710*t^11 + 51030919095*t^12 + 147368813970*t^13 + 393197605792*t^14 + 975980866856*t^15 + 2266977091533*t^16 + 4952467350549*t^17 + 10220353765317*t^18 + 20000425620982*t^19 + 37238997469701*t^20 + 66164771134709*t^21 + 112476891429452*t^22 + 183365550921732*t^23 + 287269293973236*t^24 + 433289919534912*t^25 + 630230390692834*t^26 + 885291593024017*t^27 + 1202550133880678*t^28 + 1581424159799051*t^29 + 2015395674628040*t^30 + 2491275358809867*t^31 + 2989255690350053*t^32 + 3483898479782320*t^33 + 3946056312532923*t^34 + 4345559454316341*t^35 + 4654344257066635*t^36 + 4849590327731195*t^37 + 4916398325176454*t^38 + 4849590327731195*t^39 + 4654344257066635*t^40 + 4345559454316341*t^41 + 3946056312532923*t^42 + 3483898479782320*t^43 + 2989255690350053*t^44 + 2491275358809867*t^45 + 2015395674628040*t^46 + 1581424159799051*t^47 + 1202550133880678*t^48 + 885291593024017*t^49 + 630230390692834*t^50 + 433289919534912*t^51 + 287269293973236*t^52 + 183365550921732*t^53 + 112476891429452*t^54 + 66164771134709*t^55 + 37238997469701*t^56 + 20000425620982*t^57 + 10220353765317*t^58 + 4952467350549*t^59 + 2266977091533*t^60 + 975980866856*t^61 + 393197605792*t^62 + 147368813970*t^63 + 51030919095*t^64 + 16193751710*t^65 + 4663304831*t^66 + 1204206107*t^67 + 274778754*t^68 + 54389347*t^69 + 9120009*t^70 + 1255833*t^71 + 136266*t^72 + 11050*t^73 + 639*t^74 + 28*t^75 + t^76) / ((-1 + t^2)^6*(t^2 + t + 1)^7*(t^6 + t^5 + t^4 + t^3 + t^2 + t + 1)^2*(t^6 + t^3 + 1)*(t^4 + t^3 + t^2 + t + 1)^4*(-1 + t)^9*(t + 1)^4*(t^2 + 1)^4).

A111085 Number of semi-magic 3-dimensional hypercubes with 27 entries and magic sum n.

Original entry on oeis.org

1, 12, 132, 847, 3921, 14286, 43687, 116757, 280656, 619219, 1273125, 2467302, 4547458, 8027223, 13648170, 22454470, 35884827, 55883718, 85034962, 126719913, 185303679, 266351932, 376882089, 525651699, 723488194, 983663109, 1322315307
Offset: 0

Views

Author

N. J. A. Sloane, Oct 12 2005

Keywords

References

  • Maya Ahmed, Jesús De Loera and Raymond Hemmecke, Polyhedral cones of magic cubes and squares, in Discrete and Computational Geometry, Springer, Berlin, 2003, pp. 25-41.

Crossrefs

Programs

  • Mathematica
    CoefficientList[ Series[(t^8 + 5t^7 + 67t^6 + 130t^5 + 242t^4 + 130t^3 + 67t^2 + 5t + 1)/((1 - t)^9(1 + t)^2), {t, 0, 26}], t] (* Robert G. Wilson v, Oct 13 2005 *)

Formula

G.f.: (t^8+5t^7+67t^6+130t^5+242t^4+130t^3+67t^2+5t+1)/((1-t)^9*(1+t)^2).
a(n) = 81*(-1)^n/256 +513*n^3/160 +3653*n^2/1120 +27*(-1)^n*n/128 +1341*n^4/640 +297*n^5/320 +87*n^6/320 +27*n^7/560 +9*n^8/2240 +175/256 +9087*n/4480. - R. J. Mathar, Nov 04 2011

Extensions

More terms from Robert G. Wilson v, Oct 13 2005

A163056 Number of 4 X 4 X 4 magic cubes composed of nonnegative integers with the magic sum n.

Original entry on oeis.org

1, 160, 34070, 4328128
Offset: 0

Views

Author

Max Alekseyev, Jul 20 2009

Keywords

Comments

A magic cube has each row, column, pillar, and triagonal (or body diagonal) adding up to the same integer (which is the magic sum).

Crossrefs

Cf. A093199.

Extensions

a(2), a(3) corrected by R. H. Hardin, Aug 07 2009
Showing 1-3 of 3 results.