cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A093301 Earliest positive integer having embedded exactly k distinct primes.

Original entry on oeis.org

1, 2, 13, 23, 113, 137, 1131, 1137, 1373, 11379, 11317, 23719, 111317, 113171, 211373, 1113171, 1113173, 1317971, 2313797, 11131733, 11317971, 13179719, 82337397, 52313797, 113179719, 113733797, 523137971, 1113173331, 1131797193, 1797193373, 2113733797, 11131733311, 11719337397
Offset: 0

Views

Author

Carlos Rivera, Apr 24 2004

Keywords

Examples

			For example: a(5) = 137 because 137 is the earliest number that has embedded 5 distinct primes: 3, 7, 13, 37 & 137.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{id = IntegerDigits@ n, lst, len}, len = Length@ id; lst = FromDigits@# & /@ Flatten[ Table[ Take[id, {i, j}], {i, 1, len}, {j, i, len}], 1]; Count[ PrimeQ@ Union@ lst, True]] (* after David W. Wilson in A039997 *); t[] := 0; t[1] = 2; k = 1; While[k < 10000000001, a = f@ k; If[ t[a] == 0, t[a] = k; Print[{a, k}]]; k += 2]; t /@ Range[0, 28] (* _Robert G. Wilson v, Apr 10 2024 *)
  • PARI
    dp(n)=if(n<12,return(if(isprime(n),[n],[])));my(v=vecsort(select(isprime, eval(Vec(Str(n)))),,8),t);while(n>9,if(gcd(n%10,10)>1,n\=10;next);t=10; while((t*=10)r,r=t;print1(", "n))) \\ Charles R Greathouse IV, Jul 10 2012
    
  • Python
    from sympy import isprime
    from itertools import count, islice
    def A039997(n):
        s = str(n)
        ss = (int(s[i:j]) for i in range(len(s)) for j in range(i+1, len(s)+1))
        return len(set(k for k in ss if isprime(k)))
    def agen():
        adict, n = dict(), 0
        for k in count(1):
            v = A039997(k)
            if v not in adict: adict[v] = k
            while n in adict: yield adict[n]; n += 1
    print(list(islice(agen(), 14))) # Michael S. Branicky, Aug 07 2022

Formula

A039997(a(n)) = n and A039997(m) <> n for m < a(n). - Reinhard Zumkeller, Jul 16 2007

Extensions

Name clarified, offset corrected, and a(9) inserted by Michael S. Branicky, Aug 07 2022
a(22) inserted and a(30)-a(38) added by Robert G. Wilson v, Apr 10 2024