cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A093361 Add/multiply sequence, see example.

Original entry on oeis.org

1, 3, 7, 11, 27, 33, 69, 77, 141, 151, 251, 263, 407, 421, 617, 633, 889, 907, 1231, 1251, 1651, 1673, 2157, 2181, 2757, 2783, 3459, 3487, 4271, 4301, 5201, 5233, 6257, 6291, 7447, 7483, 8779, 8817, 10261, 10301, 11901, 11943, 13707, 13751, 15687, 15733, 17849
Offset: 0

Views

Author

Jorge Coveiro, Apr 28 2004

Keywords

Comments

It appears that a(2*n+1) = 2*(n + A002623(2*n-1)) + 3. - Carl Najafi, Jan 21 2013

Examples

			a(0) = 1
a(1) = 1+2
a(2) = 1+2*3
a(3) = 1+2*3+4
a(4) = 1+2*3+4*5
a(5) = 1+2*3+4*5+6
a(6) = 1+2*3+4*5+6*7
a(7) = 1+2*3+4*5+6*7+8
a(8) = 1+2*3+4*5+6*7+8*9
		

Crossrefs

Cf. A002623.

Programs

  • Mathematica
    LinearRecurrence[{1,3,-3,-3,3,1,-1},{1,3,7,11,27,33,69},50] (* Harvey P. Dale, Jun 02 2019 *)

Formula

a(n) = (1/24)*(4*n^3 + 12*n^2 + 20*n + 33 + (6*n^2 - 9)*(-1)^n). - Ralf Stephan, Dec 02 2004
G.f.: (1 + 2*x + x^2 - 2*x^3 + 7*x^4 - x^6)/((1 + x)^3*(x - 1)^4). - R. J. Mathar, May 20 2013
E.g.f.: ((12 + 15*x + 15*x^2 + 2*x^3)*cosh(x) + (21 + 21*x + 9*x^2 + 2*x^3)*sinh(x))/12. - Stefano Spezia, Apr 18 2023

Extensions

More terms from Ralf Stephan, Dec 02 2004