cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A093406 a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) + a(n-4).

Original entry on oeis.org

1, 3, 11, 31, 71, 145, 289, 601, 1321, 2979, 6683, 14743, 32111, 69697, 151777, 332113, 728689, 1598883, 3503627, 7668079, 16774775, 36704017, 80343361, 175916521, 385196761, 843365379, 1846290395, 4041672871, 8847607391, 19368919297, 42403014721, 92830645537
Offset: 1

Views

Author

Gary W. Adamson, Mar 28 2004

Keywords

Comments

a(n)/a(n-1) tends to 2.189207115... = 1 + 2^(1/4) = 1 + A010767.

Examples

			a(4) = 31, since M^4 * [1,1,1,1] = [3, 11, 31, 71].
		

References

  • E. J. Barbeau, Polynomials, Springer-Verlag NY Inc, 1989, p. 136.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{4,-6,4,1},{1,3,11,31},40] (* Harvey P. Dale, Jul 22 2013 *)

Formula

We use a 4 X 4 matrix corresponding to the characteristic polynomial (x - 1)^4 - 2 = 0 = x^4 - 4x^3 + 6x^2 - 4x - 1 = 0, being [0 1 0 0 / 0 0 1 0 / 0 0 0 1 / 1 4 -6 4]. Let the matrix = M. Perform M^n * [1, 1, 1, 1]. a(n) = the third term from the left, (the other 3 terms being offset members of the series).
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)+a(n-4). G.f.: -x*(x^3+5*x^2-x+1)/ (x^4+4*x^3-6*x^2+4*x-1). [Colin Barker, Oct 21 2012]

Extensions

Corrected by T. D. Noe, Nov 08 2006
New name using recurrence from Colin Barker, Joerg Arndt, Apr 15 2021