cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A093423 Consider the triangle whose first part is shown as an example in the entry A093422. If the n-th term of the triangle read by rows is a fraction then a(n) is the denominator of the fraction, otherwise a(n)=1.

Original entry on oeis.org

1, 1, 3, 1, 5, 1, 1, 7, 3, 5, 1, 9, 1, 7, 1, 1, 11, 1, 1, 1, 7, 1, 13, 3, 11, 5, 3, 1, 1, 15, 1, 13, 1, 11, 1, 1, 1, 17, 1, 5, 1, 13, 1, 11, 1, 1, 19, 3, 17, 1, 1, 7, 13, 1, 11, 1, 21, 1, 19, 1, 17, 1, 1, 1, 13, 1, 1, 23, 1, 7, 5, 19, 1, 17, 1, 1, 1, 13
Offset: 1

Views

Author

Amarnath Murthy, Mar 30 2004

Keywords

Examples

			Triangle begins:
  1;
  1,  3;
  1,  5,  1;
  1,  7,  3,  5;
  1,  9,  1,  7,  1;
  1, 11,  1,  1,  1,  7;
  1, 13,  3, 11,  5,  3,  1;
  1, 15,  1, 13,  1, 11,  1,  1;
  ...
		

Crossrefs

Programs

  • Magma
    /* as a triangle */ [[Denominator(2*Binomial(n,k)*Factorial(k-1)/(2*n-k+1)): k in [1..n]]: n in [1..30]]; // G. C. Greubel, Sep 01 2018
  • Maple
    A09342x := proc(n,m) local a,i,N,D ; N := n ; if m = 1 then D := 1 ; else D := n ; end ; for i from 1 to m-1 do N := N*(n-i) ; D := D+n-i ; od ; simplify(N/D) ; end: A093423 := proc(n,m) denom(A09342x(n,m)) ; end: for n from 1 to 12 do for m from 1 to n do printf("%d, ",A093423(n,m)) ; od ; od ; # R. J. Mathar, Apr 28 2007
  • Mathematica
    Table[Denominator[2*Binomial[n,k]*(k-1)!/(2*n-k+1)], {n,1,30}, {k,1,n}]//Flatten (* G. C. Greubel, Sep 01 2018 *)
  • PARI
    for(n=1,10, for(k=1,n, print1(denominator(2*binomial(n,k)*(k-1)!/(2*n-k+1)), ", "))) \\ G. C. Greubel, Sep 01 2018
    

Formula

A093422(n,m)/A093423(n,m) = 2*binomial(n,m)*(m-1)!/(2*n-m+1) for 2 <= m < n. A093422(n,1)/A093423(n,1)= n. - R. J. Mathar, Apr 28 2007

Extensions

More terms from R. J. Mathar, Apr 28 2007
Better definition from Omar E. Pol, Jan 10 2009

A093420 Triangle read by rows: T(n,k) is the numerator of f(n, k) = (Product_{i = 0..k-1} (n-i))/(Sum_{i = 1..k} i) for 1 <= k <= n.

Original entry on oeis.org

1, 2, 2, 3, 2, 1, 4, 4, 4, 12, 5, 20, 10, 12, 8, 6, 10, 20, 36, 48, 240, 7, 14, 35, 84, 168, 240, 180, 8, 56, 56, 168, 448, 960, 1440, 1120, 9, 24, 84, 1512, 1008, 2880, 6480, 10080, 8064, 10, 30, 120, 504, 2016, 7200, 21600, 50400, 80640, 725760, 11, 110, 165
Offset: 1

Views

Author

Amarnath Murthy, Mar 30 2004

Keywords

Examples

			Triangle T(n,k) (with rows n >= 1 and columns k >= 1) begins as follows:
  1,
  2,  2,
  3,  2,  1,
  4,  4,  4, 12,
  5, 20, 10, 12,   8,
  6, 10, 20, 36,  48, 240,
  7, 14, 35, 84, 168, 240, 180;
  ...
		

Crossrefs

Cf. A090585, A090586, A093412, A093421 (denominators), A093422.

Formula

T(n,n) = numerator(f(n, n)) = numerator(2*(n-1)!/(n+1)) = A090586(n).

Extensions

Edited and extended by David Wasserman, Aug 29 2006
Showing 1-2 of 2 results.