cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A090586 Denominator of Sum/Product of first n numbers.

Original entry on oeis.org

1, 2, 1, 12, 8, 240, 180, 1120, 8064, 725760, 604800, 79833600, 68428800, 830269440, 10897286400, 2615348736000, 2324754432000, 711374856192000, 640237370572800, 11585247657984000, 221172909834240000, 102181884343418880000, 93666727314800640000
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 03 2003

Keywords

Comments

a(n) = A000142(n)/A069268(n);
a(p-1) = 2*A000142(p-2) for odd primes.
a(n) = A060593((n - 1)/2) for odd n. - Gregory Gerard Wojnar, Jun 10 2021

Crossrefs

Cf. A090585 (numerator), A060593.
Main diagonal of A093420.

Programs

  • Magma
    [Denominator(n + 1) / (2*Factorial(n - 1)): n in [1..30]]; // Vincenzo Librandi, Oct 15 2018
  • Maple
    seq(denom((n+1)/(2*(n-1)!)),n=1..25); # Robert Israel, Oct 14 2018
  • Mathematica
    Table[Denominator[(n + 1) / (2 (n - 1)!)], {n, 25}] (* Vincenzo Librandi, Oct 15 2018 *)

A093421 Triangle read by rows: T(n,k) is the denominator of f(n, k) = (Product_{i = 0..k-1} (n-i))/(Sum_{i = 1..k} i) for 1 <= k <= n.

Original entry on oeis.org

1, 1, 3, 1, 1, 1, 1, 1, 1, 5, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amarnath Murthy, Mar 30 2004

Keywords

Examples

			Triangle T(n,k) (with rows n >= 1 and columns k >= 1) begins as follows:
  1;
  1, 3;
  1, 1, 1;
  1, 1, 1, 5;
  1, 3, 1, 1, 1;
  1, 1, 1, 1, 1, 7;
  1, 1, 1, 1, 1, 1, 1;
  1, 3, 1, 1, 1, 1, 1, 1;
  1, 1, 1, 5, 1, 1, 1, 1, 1;
  1, 1, 1, 1, 1, 1, 1, 1, 1, 11;
  ...
		

Crossrefs

Cf. A090585, A090586, A093415, A093420 (numerators), A093423.

Formula

T(n,n) = denominator(f(n, n)) = denominator(2*(n-1)!/(n+1)).

Extensions

Edited and extended by David Wasserman, Aug 29 2006

A093422 In the triangle shown below the n-th row contains n rational numbers n/1, {n*(n-1)}/{n +(n-1)}, {(n)*(n-1)*(n-2)}/{n +(n-1)+(n-2)}, ..., the last term being 2*(n-1)!/(n+1). Sequence gives the numerators in each row.

Original entry on oeis.org

1, 2, 2, 3, 6, 1, 4, 12, 8, 12, 5, 20, 5, 60, 8, 6, 30, 8, 20, 36, 240, 7, 42, 35, 420, 504, 560, 180, 8, 56, 16, 840, 224, 6720, 1152, 1120, 9, 72, 21, 504, 432, 20160, 4320, 90720, 8064, 10, 90, 80, 2520, 756, 3360, 86400, 453600, 67200, 725760, 11, 110, 33, 3960
Offset: 1

Views

Author

Amarnath Murthy, Mar 30 2004

Keywords

Examples

			Triangle of fractions starts
  1,
  2, 2/3,
  3, 6/5, 1,
  4, 12/7, 8/3, 12/5,
  5, 20/9, 5, 60/7, 8,
  6, 30/11, 8, 20, 36, 240/7,
  7, 42/13, 35/3, 420/11, 504/5, 560/3, 180,
  8, 56/15, 16, 840/13, 224, 6720/11, 1152, 1120,
  9, 72/17, 21, 504/5, 432, 20160/13, 4320, 90720/11, 8064,
		

Crossrefs

Programs

  • Magma
    /* as a triangle */ [[k le 1 select n else Numerator(2*Binomial(n,k)*Factorial(k-1)/(2*n-k+1)): k in [1..n]]: n in [1..10]]; // G. C. Greubel, Sep 01 2018
  • Maple
    A09342x := proc(n,m) local i,N,D ; N := n ; if m = 1 then D := 1 ; else D := n ; end ; for i from 1 to m-1 do N := N*(n-i) ; D := D+n-i ; od ; simplify(N/D) ; end: A093422 := proc(n,m) numer(A09342x(n,m)) ; end: for n from 1 to 12 do for m from 1 to n do printf("%d, ",A093422(n,m)) ; od ; od ; # R. J. Mathar, Apr 28 2007
  • Mathematica
    Table[If[k == 1, n, Numerator[2*Binomial[n,k]*(k-1)!/(2*n-k+1)]], {n,1,30}, {k,1,n}]//Flatten (* G. C. Greubel, Sep 01 2018 *)
  • PARI
    for(n=1,10, for(k=1,n, print1(if(k==1, n, denominator(2*binomial(n,k)*(k-1)!/(2*n-k+1))), ", "))) \\ G. C. Greubel, Sep 01 2018
    

Formula

A093422(n,m)/A093423(n,m) = 2*binomial(n,m)*(m-1)!/(2*n-m+1) for 2 <= m < n. A093422(n,1)/A093423(n,1)= n. - R. J. Mathar, Apr 28 2007

Extensions

More terms from R. J. Mathar, Apr 28 2007

A093423 Consider the triangle whose first part is shown as an example in the entry A093422. If the n-th term of the triangle read by rows is a fraction then a(n) is the denominator of the fraction, otherwise a(n)=1.

Original entry on oeis.org

1, 1, 3, 1, 5, 1, 1, 7, 3, 5, 1, 9, 1, 7, 1, 1, 11, 1, 1, 1, 7, 1, 13, 3, 11, 5, 3, 1, 1, 15, 1, 13, 1, 11, 1, 1, 1, 17, 1, 5, 1, 13, 1, 11, 1, 1, 19, 3, 17, 1, 1, 7, 13, 1, 11, 1, 21, 1, 19, 1, 17, 1, 1, 1, 13, 1, 1, 23, 1, 7, 5, 19, 1, 17, 1, 1, 1, 13
Offset: 1

Views

Author

Amarnath Murthy, Mar 30 2004

Keywords

Examples

			Triangle begins:
  1;
  1,  3;
  1,  5,  1;
  1,  7,  3,  5;
  1,  9,  1,  7,  1;
  1, 11,  1,  1,  1,  7;
  1, 13,  3, 11,  5,  3,  1;
  1, 15,  1, 13,  1, 11,  1,  1;
  ...
		

Crossrefs

Programs

  • Magma
    /* as a triangle */ [[Denominator(2*Binomial(n,k)*Factorial(k-1)/(2*n-k+1)): k in [1..n]]: n in [1..30]]; // G. C. Greubel, Sep 01 2018
  • Maple
    A09342x := proc(n,m) local a,i,N,D ; N := n ; if m = 1 then D := 1 ; else D := n ; end ; for i from 1 to m-1 do N := N*(n-i) ; D := D+n-i ; od ; simplify(N/D) ; end: A093423 := proc(n,m) denom(A09342x(n,m)) ; end: for n from 1 to 12 do for m from 1 to n do printf("%d, ",A093423(n,m)) ; od ; od ; # R. J. Mathar, Apr 28 2007
  • Mathematica
    Table[Denominator[2*Binomial[n,k]*(k-1)!/(2*n-k+1)], {n,1,30}, {k,1,n}]//Flatten (* G. C. Greubel, Sep 01 2018 *)
  • PARI
    for(n=1,10, for(k=1,n, print1(denominator(2*binomial(n,k)*(k-1)!/(2*n-k+1)), ", "))) \\ G. C. Greubel, Sep 01 2018
    

Formula

A093422(n,m)/A093423(n,m) = 2*binomial(n,m)*(m-1)!/(2*n-m+1) for 2 <= m < n. A093422(n,1)/A093423(n,1)= n. - R. J. Mathar, Apr 28 2007

Extensions

More terms from R. J. Mathar, Apr 28 2007
Better definition from Omar E. Pol, Jan 10 2009
Showing 1-4 of 4 results.