cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A353280 n is a term if n = 0 or n does not divide F(n, k) for all k >= 0, where F(n, k) are the Fibonacci numbers A352744.

Original entry on oeis.org

0, 5, 6, 10, 12, 15, 18, 20, 24, 25, 30, 35, 36, 40, 42, 45, 48, 50, 54, 55, 56, 60, 65, 66, 70, 72, 75, 78, 80, 84, 85, 90, 91, 95, 96, 100, 102, 105, 108, 110, 112, 114, 115, 120, 125, 126, 130, 132, 135, 138, 140, 144, 145, 150, 153, 155, 156, 160, 162, 165
Offset: 1

Views

Author

Peter Luschny, Apr 09 2022

Keywords

Comments

n is a term if 0 is not a term of the sequence A352747(n, .). Since A352747(n, .) is for all n a pure periodic sequence, it is sufficient to require that 0 is not a term of period(A352747(n, .)). Since the length of the period is <= n, the condition can be checked in a finite number of steps.
The multiples of 5 and 6 (A093509) are a subsequence. The terms not of this form start 56, 91, 112, ..., and are in A353281.

Examples

			period(A352747(6, .)) = (5, 1, 3) is zero-free, therefore 6 is a term of a.
period(A352747(7, .)) = (1, 0, 6, 5, 4, 3, 2), thus 7 is not a term of a.
		

Crossrefs

a = A093509 union A353281.

Programs

  • Maple
    f := n -> combinat:-fibonacci(n): F := (n, k) -> (n-1)*f(k) + f(k+1):
    df := n -> denom(f(n)/n) - 1: period := n -> [seq(modp(F(k,n), n), k = 0..df(n))]:
    isA353280 := n -> n = 0 or not member(0, period(n)):
    select(isA353280, [$(0..166)]);
  • SageMath
    def F(n, k): return (n - 1)*fibonacci(k) + fibonacci(k + 1)
    def df(n): return denominator(fibonacci(n) / n)
    def period(n): return (Integer(n).divides(F(k, n)) for k in range(df(n)))
    def isA353280(n): return n == 0 or not any([k == True for k in period(n)])
    def A353280List(upto): return [n for n in range(upto + 1) if isA353280(n)]
    print(A353280List(165))

A162698 Numbers n such that the incidence matrix of the grid n X n has -1 as eigenvalue.

Original entry on oeis.org

4, 5, 9, 11, 14, 17, 19, 23, 24, 29, 34, 35, 39, 41, 44, 47, 49, 53, 54, 59, 64, 65, 69, 71, 74, 77, 79, 83, 84, 89, 94, 95, 99, 101, 104, 107, 109, 113, 114, 119, 124, 125, 129, 131, 134, 137, 139, 143, 144, 149, 154, 155, 159, 161, 164, 167, 169, 173, 174, 179, 184, 185, 189, 191, 194, 197, 199
Offset: 1

Views

Author

Vincent Delecroix, Jul 11 2009

Keywords

Comments

Numbers n such that n+1 is a multiple of 5 or 6. - Tom Edgar, Dec 15 2017

Crossrefs

Programs

  • Mathematica
    With[{nn=40},Select[Union[Join[5*Range[nn],6*Range[nn]]]-1,#<=5nn&]] (* Harvey P. Dale, Sep 04 2023 *)
  • PARI
    for(n=1,100, if( matdet(matrix(n^2,n^2,i,j, (abs((i-1)\n - (j-1)\n) + abs((i-1)%n - (j-1)%n)==1) + (i==j) ))==0, print1(n,", ") ) ) \\ Max Alekseyev, Apr 23 2010
    
  • PARI
    Vec(x*(x^9+4*x^8-3*x^7+7*x^6-5*x^5+8*x^4-5*x^3+7*x^2-3*x+4) / ((x-1)^2*(x^4-x^3+x^2-x+1)*(x^4+x^3+x^2+x+1)) + O(x^100)) \\ Colin Barker, Dec 15 2017
    
  • Sage
    [n for n in [1..200] if (n+1)%5==0 or (n+1)%6==0] # Tom Edgar, Dec 15 2017

Formula

G.f.: x*(x^9+4*x^8-3*x^7+7*x^6-5*x^5+8*x^4-5*x^3+7*x^2-3*x+4) / ((x-1)^2*(x^4-x^3+x^2-x+1)*(x^4+x^3+x^2+x+1)). - Colin Barker, Dec 03 2012 ["Empirical" removed after Tom Edgar's comment by Andrey Zabolotskiy, Dec 15 2017]
a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - 2*a(n-4) + 2*a(n-5) - 2*a(n-6) + 2*a(n-7) - 2*a(n-8) + 2*a(n-9) - a(n-10) for n>10.

Extensions

Twelve more terms from Max Alekseyev, Apr 23 2010
a(33)-a(40) from Max Alekseyev, Feb 15 2013
More terms from Tom Edgar, Dec 15 2017

A353281 k is a term if 5 and 6 do not divide k and k does not divide F(n, j) for all j >= 0, where F(n, j) are the Fibonacci numbers.

Original entry on oeis.org

56, 91, 112, 153, 182, 224, 273, 364, 392, 406, 448, 459, 616, 637, 703, 728, 752, 784, 812, 819, 896, 952, 979, 1001, 1064, 1071, 1183, 1232, 1274, 1288, 1377, 1406, 1431, 1456, 1504, 1547, 1568, 1624, 1683, 1729, 1736, 1792, 1892, 1904, 1911, 1958, 1989
Offset: 1

Views

Author

Peter Luschny, Apr 10 2022

Keywords

Examples

			91 is a term because period(A352747(91, .)) = [34, 60, 86, 21, 47, 73, 8] is zero-free, and 5 and 6 do not divide 91.
		

Crossrefs

{a(n)} union A093509 = A353280.

Programs

Showing 1-3 of 3 results.