A353280 n is a term if n = 0 or n does not divide F(n, k) for all k >= 0, where F(n, k) are the Fibonacci numbers A352744.
0, 5, 6, 10, 12, 15, 18, 20, 24, 25, 30, 35, 36, 40, 42, 45, 48, 50, 54, 55, 56, 60, 65, 66, 70, 72, 75, 78, 80, 84, 85, 90, 91, 95, 96, 100, 102, 105, 108, 110, 112, 114, 115, 120, 125, 126, 130, 132, 135, 138, 140, 144, 145, 150, 153, 155, 156, 160, 162, 165
Offset: 1
Keywords
Examples
period(A352747(6, .)) = (5, 1, 3) is zero-free, therefore 6 is a term of a. period(A352747(7, .)) = (1, 0, 6, 5, 4, 3, 2), thus 7 is not a term of a.
Programs
-
Maple
f := n -> combinat:-fibonacci(n): F := (n, k) -> (n-1)*f(k) + f(k+1): df := n -> denom(f(n)/n) - 1: period := n -> [seq(modp(F(k,n), n), k = 0..df(n))]: isA353280 := n -> n = 0 or not member(0, period(n)): select(isA353280, [$(0..166)]);
-
SageMath
def F(n, k): return (n - 1)*fibonacci(k) + fibonacci(k + 1) def df(n): return denominator(fibonacci(n) / n) def period(n): return (Integer(n).divides(F(k, n)) for k in range(df(n))) def isA353280(n): return n == 0 or not any([k == True for k in period(n)]) def A353280List(upto): return [n for n in range(upto + 1) if isA353280(n)] print(A353280List(165))
Comments