A093556 Triangle of numerators of coefficients of Faulhaber polynomials in Knuth's version.
1, 1, 0, 1, -1, 0, 1, -4, 2, 0, 1, -5, 3, -3, 0, 1, -4, 17, -10, 5, 0, 1, -35, 287, -118, 691, -691, 0, 1, -8, 112, -352, 718, -280, 140, 0, 1, -21, 66, -293, 4557, -3711, 10851, -10851, 0, 1, -40, 217, -4516, 2829, -26332, 750167, -438670, 219335, 0, 1, -33, 506, -2585, 7579, -198793, 1540967, -627073, 1222277, -1222277, 0
Offset: 1
Examples
Triangle begins: [1]; [1,0]; [1,-1,0]; [1,-4,2,0]; ... Numerators of Knuth's Faulhaber triangle A(m,k): [1], [1, 0], [1, -1/2, 0], [1, -4/3, 2/3, 0], ... A(m,m-1)=1 if m=1, else 0. Edwards' Faulhaber triangle F^{-1}(m,l) = A(m,m-l)/m, for m>=2, l>=2: [1/2], [-1/6, 1/3], [1/6, -1/3, 1/4], [-3/10, 3/5, -1/2, 1/5], ...
References
- Ivo Schneider, Johannes Faulhaber 1580-1635, Birkhäuser Verlag, Basel, Boston, Berlin, 1993, ch. 7, pp. 131-159.
Links
- A. W. F. Edwards, A quick route to sums of powers, Amer. Math. Monthly 93 (1986) 451-455.
- D. E. Knuth, Johann Faulhaber and sums of powers, Math. Comput. 203 (1993), 277-294.
- Wolfdieter Lang, First 10 rows and Faulhaber triangle with rational entries and examples.
- D. Yeliussizov, Permutation Statistics on Multisets, Ph.D. Dissertation, Computer Science, Kazakh-British Technical University, 2012. - _N. J. A. Sloane_, Jan 03 2013
Crossrefs
Programs
-
Mathematica
a[m_, k_] := (-1)^(m-k)*Sum[ Binomial[2*m, m-k-j]*Binomial[m-k+j, j]*((m-k-j)/(m-k+j))*BernoulliB[m+k+j], {j, 0, m-k}]; Flatten[ Table[ Numerator[a[m, k]], {m, 1, 11}, {k, 0, m-1}]] (* Jean-François Alcover, Oct 25 2011 *)
-
PARI
T(n,k) = numerator((-1)^(n-k)*sum(j=0, n-k, binomial(2*n, n-k-j)*binomial(n-k+j,j)*(n-k-j)/(n-k+j) * bernfrac(n+k+j))); \\ Michel Marcus, Aug 03 2025
Formula
a(m, k) = numerator(A(m, k)) with recursion: A(m, 0)=1, A(m, k) = -(Sum_{j=0..k-1} binomial(m-j, 2*k+1-2*j)*A(m, j))/(m-k) if 0 <= k <= m-1, otherwise 0. From the Knuth 1993 reference, p. 288, eq.(*) with A^{(m)}_k = A(m, k).
A(m, k) = ((-1)^(m-k))*Sum_{j=0..m-k} binomial(2*m, m-k-j)*binomial(m-k+j, j)*((m-k-j)/(m-k+j))*Bernoulli(m+k+j). From the Knuth 1993 reference, p. 289, last eq. with A^{(m)}_k = A(m, k). Attributed to I. M. Gessel and X. G. Viennot (see A065551 for the 1989 reference). For Bernoulli numbers see A027641 with A027642.
Extensions
More terms from Michel Marcus, Aug 03 2025
Comments