A093559 Triangle of denominators of coefficients of Faulhaber polynomials used for sums of even powers.
6, 10, 30, 14, 14, 42, 18, 9, 10, 30, 22, 33, 66, 22, 66, 26, 26, 78, 273, 910, 2730, 30, 30, 15, 9, 90, 2, 6, 34, 51, 51, 51, 102, 51, 170, 510, 38, 19, 95, 95, 190, 57, 3990, 266, 798, 42, 14, 7, 21, 6, 66, 1386, 693, 110, 330, 46, 138, 46, 23, 230, 690, 345, 23, 230, 46
Offset: 2
Examples
Triangle begins: [6]; [10,30]; [14,14,42]; [18,9,10,30]; ... Denominators of: [1/6]; [1/10,-1/30]; [1/14,-1/14,1/42]; [1/18,-1/9,1/10,-1/30]; ... (see W. Lang link in A093558.)
References
- Ivo Schneider, Johannes Faulhaber 1580-1635, Birkhäuser Verlag, Basel, Boston, Berlin, 1993, ch. 7, pp. 131-159.
Links
- A. Dzhumadil'daev and D. Yeliussizov, Power sums of binomial coefficients, Journal of Integer Sequences, 16 (2013), Article 13.1.4.
- D. E. Knuth, Johann Faulhaber and sums of powers, Math. Comput. 203 (1993), 277-294.
- D. Yeliussizov, Permutation Statistics on Multisets, Ph.D. Dissertation, Computer Science, Kazakh-British Technical University, 2012. [_N. J. A. Sloane_, Jan 03 2013]
Programs
-
Mathematica
a[m_, k_] := (-1)^(m-k)*Sum[Binomial[2*m, m-k-j]*Binomial[m-k+j, j]*((m-k-j)/(m-k+j))*BernoulliB[m+k+j], {j, 0, m-k}]; t[m_, k_] := (m-k)*a[m, k]/(2*m*(2*m-1)); Table[t[m, k] // Denominator, {m, 2, 12}, {k, 0, m-2}] // Flatten (* Jean-François Alcover, Mar 03 2014 *)
Comments