A093556
Triangle of numerators of coefficients of Faulhaber polynomials in Knuth's version.
Original entry on oeis.org
1, 1, 0, 1, -1, 0, 1, -4, 2, 0, 1, -5, 3, -3, 0, 1, -4, 17, -10, 5, 0, 1, -35, 287, -118, 691, -691, 0, 1, -8, 112, -352, 718, -280, 140, 0, 1, -21, 66, -293, 4557, -3711, 10851, -10851, 0, 1, -40, 217, -4516, 2829, -26332, 750167, -438670, 219335, 0, 1, -33, 506, -2585, 7579, -198793, 1540967, -627073, 1222277, -1222277, 0
Offset: 1
Triangle begins:
[1];
[1,0];
[1,-1,0];
[1,-4,2,0];
...
Numerators of Knuth's Faulhaber triangle A(m,k):
[1],
[1, 0],
[1, -1/2, 0],
[1, -4/3, 2/3, 0],
...
A(m,m-1)=1 if m=1, else 0.
Edwards' Faulhaber triangle F^{-1}(m,l) = A(m,m-l)/m, for m>=2, l>=2:
[1/2],
[-1/6, 1/3],
[1/6, -1/3, 1/4],
[-3/10, 3/5, -1/2, 1/5],
...
- Ivo Schneider, Johannes Faulhaber 1580-1635, Birkhäuser Verlag, Basel, Boston, Berlin, 1993, ch. 7, pp. 131-159.
- A. W. F. Edwards, A quick route to sums of powers, Amer. Math. Monthly 93 (1986) 451-455.
- D. E. Knuth, Johann Faulhaber and sums of powers, Math. Comput. 203 (1993), 277-294.
- Wolfdieter Lang, First 10 rows and Faulhaber triangle with rational entries and examples.
- D. Yeliussizov, Permutation Statistics on Multisets, Ph.D. Dissertation, Computer Science, Kazakh-British Technical University, 2012. - _N. J. A. Sloane_, Jan 03 2013
Cf.
A065551 and
A065553 for Ira M. Gessel's and X. G. Viennot's version of Faulhaber triangle which is Edwards' Faulhaber triangle augmented with a first row and first column.
-
a[m_, k_] := (-1)^(m-k)*Sum[ Binomial[2*m, m-k-j]*Binomial[m-k+j, j]*((m-k-j)/(m-k+j))*BernoulliB[m+k+j], {j, 0, m-k}]; Flatten[ Table[ Numerator[a[m, k]], {m, 1, 11}, {k, 0, m-1}]] (* Jean-François Alcover, Oct 25 2011 *)
-
T(n,k) = numerator((-1)^(n-k)*sum(j=0, n-k, binomial(2*n, n-k-j)*binomial(n-k+j,j)*(n-k-j)/(n-k+j) * bernfrac(n+k+j))); \\ Michel Marcus, Aug 03 2025
A093558
Triangle of numerators of coefficients of Faulhaber polynomials used for sums of even powers.
Original entry on oeis.org
1, 1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -5, 17, -5, 5, 1, -5, 41, -236, 691, -691, 1, -7, 14, -22, 359, -7, 7, 1, -14, 77, -293, 1519, -1237, 3617, -3617, 1, -6, 217, -1129, 8487, -6583, 750167, -43867, 43867, 1, -5, 23, -470, 689, -28399, 1540967, -1254146, 174611, -174611
Offset: 2
Triangle begins:
[1];
[1,-1];
[1,-1,1];
[1,-1,1,-1];
[1,-5,17,-5,5]
...
Numerators of:
[1/6];
[1/10,-1/30];
[1/14,-1/14,1/42];
[1/18,-1/9,1/10,-1/30];
[1/22,-5/33,17/66,-5/22,5/66];
... (see Lang link)
- Ivo Schneider, Johannes Faulhaber 1580-1635, Birkhäuser Verlag, Basel, Boston, Berlin, 1993, ch. 7, pp. 131-159.
- A. Dzhumadil'daev and D. Yeliussizov, Power sums of binomial coefficients, Journal of Integer Sequences, 16 (2013), Article 13.1.4.
- D. E. Knuth, Johann Faulhaber and sums of powers, Math. Comput. 203 (1993), 277-294.
- Wolfdieter Lang, First 10 rows and triangle with rational entries.
- D. Yeliussizov, Permutation Statistics on Multisets, Ph.D. Dissertation, Computer Science, Kazakh-British Technical University, 2012. [_N. J. A. Sloane_, Jan 03 2013]
-
a[m_, k_] := (-1)^(m-k)*Sum[Binomial[2*m, m-k-j]*Binomial[m-k+j, j]*((m-k-j)/(m-k+j))*BernoulliB[m+k+j], {j, 0, m-k}]; t[m_, k_] := (m-k)*a[m, k]/(2*m*(2*m-1)); Table[t[m, k] // Numerator, {m, 2, 12}, {k, 0, m-2}] // Flatten (* Jean-François Alcover, Mar 03 2014 *)
A201453
Triangle of numerators of dual coefficients of Faulhaber.
Original entry on oeis.org
1, 1, -1, 1, -1, 2, 1, -2, 1, -8, 1, -10, 11, -4, 8, 1, -5, 29, -5, 8, -32, 1, -7, 7, -33, 26, -8, 6112, 1, -28, 602, -100, 313, -112, 512, -3712, 1, -4, 70, -1268, 593, -1816, 1936, -2944, 362624, 1, -15, 38, -566, 9681, -1481, 31568, -960, 2432, -71706112, 1, -55, 176, -1606, 5401, -54499, 290362, -58864, 44736, -285568, 3341113856
Offset: 0
Triangle begins:
1;
1, -1;
1, -1, 2;
1, -2, 1, -8;
1, -10, 11, -4, 8;
1, -5, 29, -5, 8, -32;
1, -7, 7, -33, 26, -8, 6112;
1, -28, 602, -100, 313, -112, 512, -3712;
1, -4, 70, -1268, 593, -1816, 1936, -2944, 362624;
1, -15, 38, -566, 9681, -1481, 31568, -960, 2432, -71706112;
...
-
[Numerator((1/(2*m-2*k+1))*&+[Binomial(m,2*k-i)*Binomial(2*m-2*k+i, i)*BernoulliNumber(i): i in [0..2*k]]): k in [0..m], m in [0..10]]; // Bruno Berselli, Jan 21 2013
-
f[m_, k_] := (1/(2*m - 2*k + 1))* Sum[Binomial[m, 2*k - i]*Binomial[2*m - 2*k + i, i]*BernoulliB[i], {i, 0, 2 k}];
a[m_, k_] := f[m, k] // Numerator;
Table[a[m, k], {m, 0, 10}, {k, 0, m}] // Flatten
A201454
Triangle of denominators of dual coefficients of Faulhaber.
Original entry on oeis.org
1, 3, 3, 5, 3, 15, 7, 5, 3, 105, 9, 21, 15, 9, 105, 11, 9, 21, 3, 9, 231, 13, 11, 3, 7, 5, 3, 15015, 15, 39, 165, 9, 15, 5, 45, 2145, 17, 5, 13, 55, 9, 15, 15, 45, 36465, 19, 17, 5, 13, 55, 3, 35, 1, 5, 969969, 21, 57, 17, 21, 13, 33, 63, 7, 5, 63, 4849845
Offset: 0
Triangle begins:
1;
3, 3;
5, 3, 15;
7, 5, 3, 10;
9, 21, 15, 9, 105;
11, 9, 21, 3, 9, 231;
13, 11, 3, 7, 5, 3, 15015;
15, 39, 165, 9, 15, 5, 45, 2145;
17, 5, 13, 55, 9, 15, 15, 45, 36465;
19, 17, 5, 13, 55, 3, 35, 1, 5, 969969;
21, 57, 17, 21, 13, 33, 63, 7, 5, 63, 4849845;
etc.
-
[Denominator((1/(2*m-2*k+1))*&+[Binomial(m,2*k-i)*Binomial(2*m-2*k+i, i)*BernoulliNumber(i): i in [0..2*k]]): k in [0..m], m in [0..10]]; // Bruno Berselli, Jan 21 2013
-
f[m_, k_] := (1/(2*m - 2*k + 1))* Sum[Binomial[m, 2*k - i]*Binomial[2*m - 2*k + i, i]*BernoulliB[i], {i, 0, 2 k}];
a[m_, k_] := f[m, k] // Denominator;
Table[a[m, k], {m, 0, 10}, {k, 0, m}] // Flatten (* Jean-François Alcover, Jan 18 2013 *)
A385567
Triangle read by rows: T(n,k) is the numerator of A(n,k), such that A(n,k) satisfies the identity for sums of odd powers: Sum_{k=1..p} k^(2n-1) = 1/(2*n) * Sum_{k=0..n-1} A(n,k) * (p^2+p)^(n-k), for all integers p >= 1.
Original entry on oeis.org
1, 1, 1, 1, 0, -1, 1, -1, 0, 1, 1, -4, 2, 0, -1, 1, -5, 3, -3, 0, 5, 1, -4, 17, -10, 5, 0, -691, 1, -35, 287, -118, 691, -691, 0, 7, 1, -8, 112, -352, 718, -280, 140, 0, -3617, 1, -21, 66, -293, 4557, -3711, 10851, -10851, 0, 43867, 1, -40, 217, -4516, 2829, -26332, 750167, -438670, 219335, 0, -174611
Offset: 0
Triangle begins:
---------------------------------------------------------------------------------
k = 0 1 2 3 4 5 6 7 8 9 10
---------------------------------------------------------------------------------
n=0: 1;
n=1: 1, 1;
n=2: 1, 0, -1;
n=3: 1, -1, 0, 1;
n=4: 1, -4, 2, 0, -1;
n=5: 1, -5, 3, -3, 0, 5;
n=6: 1, -4, 17, -10, 5, 0, -691;
n=7: 1, -35, 287, -118, 691, -691, 0, 7;
n=8: 1, -8, 112, -352, 718, -280, 140, 0, -3617;
n=9: 1, -21, 66, -293, 4557, -3711, 10851, -10851, 0, 43867;
n=10: 1, -40, 217, -4516, 2829, -26332, 750167, -438670, 219335, 0, -174611;
...
- Donald E. Knuth, Johann Faulhaber and Sums of Powers, arXiv:9207222 [math.CA], 1992, see page 16.
- Petro Kolosov, Faulhaber's coefficients: Examples, GitHub, 2025.
- Petro Kolosov, Mathematica programs, GitHub, 2025.
-
FaulhaberCoefficient[n_, k_] := 0;
FaulhaberCoefficient[n_, k_] := (-1)^(n - k) * Sum[Binomial[2 n, n - k - j]* Binomial[n - k + j, j] * (n - k - j)/(n - k + j) * BernoulliB[n + k + j], {j, 0, n - k}] /; 0 <= k < n;
FaulhaberCoefficient[n_, k_] := BernoulliB[2 n] /; k == n;
Flatten[Table[Numerator[FaulhaberCoefficient[n, k]], {n, 0, 10}, {k, 0, n}]]
-
T(n,k) = numerator(if (k==n, bernfrac(2*n), if (kMichel Marcus, Aug 03 2025
A386728
Triangle read by rows: T(n,k) is the denominator of A(n,k), such that A(n,k) satisfies the identity for sums of odd powers: Sum_{k=1..p} k^(2n-1) = 1/(2*n) * Sum_{k=0..n-1} A(n,k) * (p^2+p)^(n-k), for all integers p >= 1.
Original entry on oeis.org
1, 1, 6, 1, 1, 30, 1, 2, 1, 42, 1, 3, 3, 1, 30, 1, 2, 1, 2, 1, 66, 1, 1, 2, 1, 1, 1, 2730, 1, 6, 15, 3, 15, 30, 1, 6, 1, 1, 3, 3, 3, 1, 1, 1, 510, 1, 2, 1, 1, 5, 2, 5, 10, 1, 798, 1, 3, 2, 7, 1, 3, 42, 21, 21, 1, 330, 1, 2, 3, 2, 1, 6, 15, 3, 5, 10, 1, 138, 1
Offset: 0
Triangle begins:
---------------------------------------------------------
k = 0 1 2 3 4 5 6 7 8 9 10
---------------------------------------------------------
n=0: 1;
n=1: 1, 6;
n=2: 1, 1, 30;
n=3: 1, 2, 1, 42;
n=4: 1, 3, 3, 1, 30;
n=5: 1, 2, 1, 2, 1, 66;
n=6: 1, 1, 2, 1, 1, 1, 2730;
n=7: 1, 6, 15, 3, 15, 30, 1, 6;
n=8: 1, 1, 3, 3, 3, 1, 1, 1, 510;
n=9: 1, 2, 1, 1, 5, 2, 5, 10, 1, 798;
n=10: 1, 3, 2, 7, 1, 3, 42, 21, 21, 1, 330;
...
- Donald E. Knuth, Johann Faulhaber and Sums of Powers, arXiv:9207222 [math.CA], 1992, see page 16.
- Petro Kolosov, Faulhaber's coefficients: Examples, GitHub, 2025.
- Petro Kolosov, Mathematica programs, GitHub, 2025.
-
FaulhaberCoefficient[n_, k_] := 0;
FaulhaberCoefficient[n_, k_] := (-1)^(n - k) * Sum[Binomial[2 n, n - k - j]* Binomial[n - k + j, j] * (n - k - j)/(n - k + j) * BernoulliB[n + k + j], {j, 0, n - k}] /; 0 <= k < n;
FaulhaberCoefficient[n_, k_] := BernoulliB[2 n] /; k == n;
Flatten[Table[Denominator[FaulhaberCoefficient[n, k]], {n, 0, 10}, {k, 0, n}]]
-
T(n,k) = denominator(if (k==n, bernfrac(2*n), if (kMichel Marcus, Aug 03 2025
Showing 1-6 of 6 results.
Comments