cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A201454 Triangle of denominators of dual coefficients of Faulhaber.

Original entry on oeis.org

1, 3, 3, 5, 3, 15, 7, 5, 3, 105, 9, 21, 15, 9, 105, 11, 9, 21, 3, 9, 231, 13, 11, 3, 7, 5, 3, 15015, 15, 39, 165, 9, 15, 5, 45, 2145, 17, 5, 13, 55, 9, 15, 15, 45, 36465, 19, 17, 5, 13, 55, 3, 35, 1, 5, 969969, 21, 57, 17, 21, 13, 33, 63, 7, 5, 63, 4849845
Offset: 0

Views

Author

Damir Yeliussizov, Jan 09 2013

Keywords

Comments

Sum((k*(k + 1))^(m), k=0..N-1)=Sum(F(m,i)*N^(2*m-2*i+1),i=0..m), m=0,1,2,...
The coefficients F(m,i) are dual to Faulhaber coefficients, because they are obtained from the inverse expression Sum((k*(k + 1))^(m), k=0..N-1) to Faulhaber's formula from Sum((k)^(2*m-1), k=0..N-1) and there holds the identity F(m+i-1,i)=(-1)^i Fe(-m,i), where Fe(-m,i)=A093558(-m,i)/A093559(-m,i) is a Faulhaber coefficient for the sums of even powers of the first N-1 integers (for details see the link, from p. 19).

Examples

			Triangle begins:
1;
3,  3;
5,  3,  15;
7,  5,  3,   10;
9,  21, 15,  9,  105;
11, 9,  21,  3,  9,   231;
13, 11, 3,   7,  5,   3,   15015;
15, 39, 165, 9,  15,  5,   45,    2145;
17, 5,  13,  55, 9,   15,  15,    45,   36465;
19, 17, 5,   13, 55,  3,   35,    1,    5,    969969;
21, 57, 17,  21, 13,  33,  63,    7,    5,    63,    4849845;
etc.
		

Crossrefs

Cf. A201453.

Programs

  • Magma
    [Denominator((1/(2*m-2*k+1))*&+[Binomial(m,2*k-i)*Binomial(2*m-2*k+i, i)*BernoulliNumber(i): i in [0..2*k]]): k in [0..m], m in [0..10]]; // Bruno Berselli, Jan 21 2013
  • Mathematica
    f[m_, k_] := (1/(2*m - 2*k + 1))* Sum[Binomial[m, 2*k - i]*Binomial[2*m - 2*k + i, i]*BernoulliB[i], {i, 0, 2 k}];
    a[m_, k_] := f[m, k] // Denominator;
    Table[a[m, k], {m, 0, 10}, {k, 0, m}] // Flatten (* Jean-François Alcover, Jan 18 2013 *)

Formula

a(m,k) = denominator(F(m,k)) with F(m,k) = (1/(2*m-2*k+1)) * sum(i=0..2*k, binomial(m,2*k-i) * binomial(2*m-2*k+i,i) * Bernoulli(i) ).
A recursion is given by F(x,0) = 1/(2*x+1) and 2*(m-k)*(2*m-2*k+1)*F(m,k)=2*m*(2*m-1)*F(m-1,k)+m*(m-1)*F(m-2,k-1).

A230069 Numerators of inverse of triangle A082985(n).

Original entry on oeis.org

1, -1, 1, 2, -1, 1, -8, 1, -2, 1, 8, -4, 11, -10, 1, -32, 8, -5, 29, -5, 1, 6112, -8, 26, -33, 7, -7, 1, -3712, 512, -112, 313, -100, 602, -28, 1, 362624, -2944, 1936, -1816, 593, -1268, 70, -4, 1, -71706112, 2432, -960, 31568, -1481, 9681, -566, 38, -15, 1
Offset: 0

Views

Author

Paul Curtz, Oct 08 2013

Keywords

Comments

First column of the example: A212196(n)/A181131(n), main diagonal of A164555(n)/A027642(n). See A190339(n). Hence a link between Chebyshev and Bernoulli numbers.
Mirror image of A201453.

Examples

			Numerators of
1,
-1/3,    1/3,
2/15,   -1/3,   1/5,
-8/105,  1/3,  -2/5,    1/7,
8/105,  -4/9, 11/15, -10/21,  1/9,
-32/231, 8/9,  -5/3,  29/21, -5/9, 1/11
		

Crossrefs

Cf. A201453(n)/A201454(n), A098435.

Programs

  • Mathematica
    rows = 10; u[n_, m_] /; m > n = 0; u[n_, m_] := Binomial[2*n - m, m]*(2*n + 1)/(2*n - 2*m + 1); t = Table[u[n, m], {n, 0, rows - 1}, {m, 0, rows - 1}] // Inverse; Table[t[[n, k]] // Numerator, {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Oct 08 2013 *)

Formula

T(k,m) = numerator of F(k,m) = (1/(2*m-2*k+1)) * sum(i=0..2*k, binomial(m,2*k-i)*binomial(2*m-2*k+i,i) * Bernoulli(i)). - Ralf Stephan, Oct 10 2013

Extensions

More terms from Jean-François Alcover, Oct 08 2013
Showing 1-2 of 2 results.