A201453 Triangle of numerators of dual coefficients of Faulhaber.
1, 1, -1, 1, -1, 2, 1, -2, 1, -8, 1, -10, 11, -4, 8, 1, -5, 29, -5, 8, -32, 1, -7, 7, -33, 26, -8, 6112, 1, -28, 602, -100, 313, -112, 512, -3712, 1, -4, 70, -1268, 593, -1816, 1936, -2944, 362624, 1, -15, 38, -566, 9681, -1481, 31568, -960, 2432, -71706112, 1, -55, 176, -1606, 5401, -54499, 290362, -58864, 44736, -285568, 3341113856
Offset: 0
Examples
Triangle begins: 1; 1, -1; 1, -1, 2; 1, -2, 1, -8; 1, -10, 11, -4, 8; 1, -5, 29, -5, 8, -32; 1, -7, 7, -33, 26, -8, 6112; 1, -28, 602, -100, 313, -112, 512, -3712; 1, -4, 70, -1268, 593, -1816, 1936, -2944, 362624; 1, -15, 38, -566, 9681, -1481, 31568, -960, 2432, -71706112; ...
Links
- A. Dzhumadil'daev and D. Yeliussizov, Power sums of binomial coefficients, Journal of Integer Sequences, 16 (2013), Article 13.1.6
Programs
-
Magma
[Numerator((1/(2*m-2*k+1))*&+[Binomial(m,2*k-i)*Binomial(2*m-2*k+i, i)*BernoulliNumber(i): i in [0..2*k]]): k in [0..m], m in [0..10]]; // Bruno Berselli, Jan 21 2013
-
Mathematica
f[m_, k_] := (1/(2*m - 2*k + 1))* Sum[Binomial[m, 2*k - i]*Binomial[2*m - 2*k + i, i]*BernoulliB[i], {i, 0, 2 k}]; a[m_, k_] := f[m, k] // Numerator; Table[a[m, k], {m, 0, 10}, {k, 0, m}] // Flatten
Formula
a(m,k) = numerator(F(m,k)) with:
1) recursion, F(x,0) = 1/(2*x+1) and 2*(m-k)*(2*m-2*k+1)*F(m,k)=2*m*(2*m-1)*F(m-1,k)+m*(m-1)*F(m-2,k-1);
2) explicit formula F(m,k) = (1/(2*m-2*k+1))sum(binomial(m,2*k-i)*binomial(2*m-2*k+i,i) Bernoulli(i), i=0..2*k)
Comments